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1. Introduction

Let A and B be two nonempty closed convex sets in a Hilbert space H. The 2-set convex
feasibility problem consists of finding a pair of points a ∈ A and b ∈ B realizing the
distance between A and B, that is, d(A,B) = ∥a − b∥. Clearly, a necessary condition for
the existence of such a pair is that the best approximation sets

E := {a ∈ A; dist(a,B) = dist(A,B)}, F := {b ∈ B; dist(b, A) = dist(A,B)} (1.1)

are nonempty. In this work we shall assume that this condition is always satisfied and
consequently the problem is well-posed. Notice that this happens whenever the intersection
of the sets A and B is nonempty (in this case, E = F = A ∩B).
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The method of alternating projections is the simplest iterative procedure for finding a
solution of the convex feasibility problem and it goes back to von Neumann [11]: let us
denote by PA and PB the projections onto the sets A and B, respectively. Then for any
starting point a0 ∈ H, consider the alternating projection sequences {an}n≥1 ⊂ A and
{bn}n⩾1 ⊂ B defined inductively by

bn = PB(an−1) and an = PA(bn) (n ∈ N). (1.2)

If the sequences {an} and {bn} converge in norm, then we say that the method of alternating
projections (also known as the von Neumann method) converges.
It is well-known that the sequences {an} and {bn} are always weakly convergent ([5]).
Notwithstanding, in the separable Hilbert space ℓ2, a celebrated example of Hundal in
2004 ([9]) shows that in general the alternating projections method may fail to converge
in norm. This was the starting point for investigations and several conditions ensuring the
convergence of the von Neumann method appeared in the literature.
Besides the case in which A and B are linear subspaces (this was the original setting
studied by von Neumann himself), one of the best known and most important sufficient
conditions for the convergence of such a method is the notion of regularity for the pair
(A,B) (see forthcoming Definition 2.6), introduced by Bauschke and Borwein in [2]. This
notion guarantees the norm convergence of the sequences defined in (1.2).
In the more recent papers [6–8], the authors studied stability properties of the alternating
projection method. More precisely, for any two sequences of nonempty closed convex sets
{An}n⩾1 and {Bn}n⩾1 such that limn→∞An = A and limn→∞ Bn = B for the Attouch-Wets
variational convergence (see forthcoming Definition 2.2) and any initial point a0 ∈ H, they
considered the perturbed alternating projection sequences {an}n≥1 and {bn}n≥1, defined as
follows:

bn = PBn(an−1) and an = PAn(bn) (n ∈ N). (1.3)

In particular, in [6], they showed that the aforementioned regularity condition is not only
sufficient to guarantee the convergence in norm of the alternating projection sequence
in (1.2), but also of its variational version given by (1.3). To be more precise, using the
notation of (1.1) let us recall the notion of d-stability introduced in [6].

Definition 1.1 (d-stability). We say that the pair (A,B) of two nonempty closed convex
subsets of a Hilbert space H is d-stable, whenever all perturbed alternating projection
sequences {an}n⩾1 and {bn}n⩾1 given in (1.3) satisfy

lim
n→∞

dist(an, E) = 0 and lim
n→∞

dist(bn, F ) = 0 (in norm).

The main result of [6] asserts that if the pair (A,B) is regular and the sets E and F are
bounded, then the pair (A,B) is d-stable. In the same paper, the authors asked whether
the inverse implication holds, stating the following open problem:

Problem 1.2. Is every d-stable pair (A,B) necessarily regular?
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The main aim of the present paper is to show that Problem 1.2 has a positive answer
under the condition that the best approximation set E is bounded (equivalently, F is
bounded). In particular, we establish the following result.

Theorem A. Let A,B be nonempty closed convex subsets of H for which the best approx-
imation sets E and F are nonempty and bounded. Then the following are equivalent:
(i) the pair (A,B) is regular;
(ii) every variational alternating projection algorithm converges

(that is, the pair (A,B) is d-stable).

In this work, we establish implication (ii) =⇒ (i) (see forthcoming Theorem 3.7). The
other implication was previously established in [6, Theorem 4.9]. Alltogether, Theorem A
provides a complete characterization of regularity by means of variational stability of al-
ternating projection sequences.
We resume this introduction with a brief description of the structure of the paper. Section 2
is devoted to fix our notation and review preliminary notions. Definitions and properties of
the Hausdorff and respectively, the Attouch Wets set convergence are therein recalled, to-
gether with relevant properties of metric projections and of alternating projections method
in a Hilbert space. In particular, the relationship between regularity and d-stability ob-
tained in [6] is recalled. In Section 3, we prove the main result of the paper, namely, the
fact that d-stability implies regularity for a given convex feasibility problem. For the con-
venience of the reader, we first prove the main result under a stronger assumption (namely,
that the involved sets A and B are separated by a linear functional and A is bounded).
Then, we eventually remove the extra assumptions and establish the result in the general
case.

2. Notation and preliminaries

Throughout this paper, we will always work with a Hilbert space H equipped with an
inner product ⟨·, ·⟩ and its induced norm ∥ · ∥. We denote by BH and SH the closed unit
ball and the unit sphere of H, respectively. If α > 0, x ∈ X, and A,B ⊂ H, we denote as
usual

x+ A := {x+ a; a ∈ A}, αA := {αa; a ∈ A}, A+B := {a+ b; a ∈ A, b ∈ B}.
For any two points x, y ∈ H, we denote by [x, y] the closed segment in H with endpoints x
and y and we set (x, y) = [x, y]\{x, y} for the corresponding “open” segment. For a subset
A of H, we denote by int (A), conv (A) and conv (A) the interior, the convex hull and the
closed convex hull of A, respectively. We further define the distance of a point x ∈ X to a
set A as follows:

dist(x,A) := inf
a∈A

∥a− x∥.

We are going to use the following simplified notation. If f is a real-valued function defined
on H, we denote

[f ⩽ α] := {x ∈ H; f(x) ⩽ α} for α ∈ R.
The sets [f ⩾ α] and [f = α] are defined similarly.
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2.1. Hausdorff and Attouch-Wets convergence of sequences of sets. Let us now
review two notions of convergence for a sequence of sets (for a more detailed overview of
this topic, see, e.g., [3]). By c(H) we denote the family of all nonempty closed subsets
of H. Let us introduce the (extended) Hausdorff metric DH in c(H). For A,B ∈ c(H), we
define the excess of A over B as follows:

e(A,B) := sup
a∈A

dist(a,B).

If A ̸= ∅ and B = ∅ we set e(A,B) = ∞, while if A = ∅ we set e(A,B) = 0. Furthermore,
we define the Hausdorff distance between sets A and B as follows:

DH(A,B) := max
{
e(A,B), e(B,A)

}
.

The above metric gives rise to our first notion of set convergence.

Definition 2.1 (Hausdorff convergence). We say that a sequence {An} in c(H) converges
in the Hausdorff sense to a set A ∈ c(H) if

limn→∞ DH(An, A) = 0 .

According to [10, Theorem 8.2.12] the sequence {An}n⩾1 in c(H) is Hausdorff converging
to a set A ∈ c(H) if and only if

sup
x∈X

| dist(x,An)− dist(x,A)| −→
n→∞

0 .

We now consider a weaker notion of convergence, the so-called Attouch-Wets convergence
(see, e.g., [10, Definition 8.2.13]). To this end, fix r > 0, A,B ∈ c(H) and set:

er(A,B) := e(A ∩ rBH, B) ∈ [0,∞),

DH,r(A,B) := max {er(A,B), er(B,A)}.
The above family of pseudo-distances gives rise to the following notion of convergence:

Definition 2.2 (Attouch-Wets convergence). We say that a sequence {An}n⩾1 in c(H)
converges in the Attouch-Wets sense to a set A ∈ c(H) if for every r > 0 we have:

limn→∞ DH, r(An, A) = 0 .

The Attouch-Wets convergence can be seen as a "localization" of the Hausdorff conver-
gence. Indeed, according to [10, Theorem 8.2.14], a sequence {An}n⩾1 in c(H) is Attouch-
Wets converging to a set A ∈ c(H) if and only if for every r > 0

sup
x∈rBH

| dist(x,Aj)− dist(x,A)| −→
n→∞

0 .

The following property relates Hausdorff and Attouch-Wets convergences.

Fact 2.3. Let A ∈ c(H), {An}n⩾1 ⊂ c(H), {rn}n ⊂ (0,+∞) increasingly converging
to +∞, and {δn}n ⊂ (0,+∞) converging to 0. Assume that DH(A ∩ rnBH, An) ⩽ δn,
whenever n ⩾ 1. Then, for every r > 0, the inequality DH,r(A,An) ⩽ δn eventually holds
as n → ∞. In particular, the sequence {An}n⩾1 is Attouch-Wets converging to A.
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Proof. Let r ∈ N. For every n ∈ N, we clearly have

er(An, A) = e(An ∩ rBH, A) ⩽ e(An, A ∩ rnBH) ⩽ δn.

Moreover, if n0 ∈ N is such that rn0 > r, then for all n ⩾ n0 we have

er(A,An) = e(A ∩ rBH, An) ⩽ e(A ∩ rnBH, An) ⩽ δn .

We have shown that DH,r(A,An) ⩽ δn eventually holds as n → ∞. The final conclusion,
about the Attouch-Wets convergence of {An}n⩾1, immediately follows. ■

2.2. Projections in Hilbert spaces and the alternating projections method. The
notions of distance between two convex sets and of projection of a point onto a convex set
of a Hilbert space play a fundamental role in our paper. The projection onto a nonempty
closed convex subset C maps any point x0 ∈ H to its nearest point in C, denoted by
PC(x0). We shall frequently use in the paper the following result, usually called variational
characterization of the projection onto C. Let c0 ∈ C and x0 ∈ H. Then c0 = PC(x0) if
and only if

⟨x0 − c0, c− c0⟩ ⩽ 0, for all c ∈ C. (2.1)
We recall that the projection PC is a nonexpansive map from H to C, i.e., it holds
∥PC(x)− PC(y)∥ ⩽ ∥x− y∥ (see, e.g., [10, Proposition 10.4.8]).

In the sequel, we shall need the following elementary fact, the proof of which is left to
the reader.

Fact 2.4. Let C,D ⊂ H be nonempty closed convex sets such that C ⊂ D. The following
assertions hold.

(a) If C is an affine set then PC is an affine function.
(b) If b, p ∈ H are such that p = PD(b) and p ∈ C, then p = PC(b).

Given n ∈ N and two convex sets A,B ∈ c(H), let us consider the nonexpansive map
ΠA,B

n : H → H, defined by

ΠA,B
0 (x) = x, ΠA,B

n (x) = PAPB . . . PAPB︸ ︷︷ ︸
n times

(x), x ∈ H.

Given A and B in c(H), let {an}n, {bn}n be the corresponding alternating projection
sequences as in (1.2), starting from the initial point x ∈ H, then we can rewrite them in
terms of the above operator ΠA,B

n ( · ) as follows:

an = ΠA,B
n (x) , bn = PB(Π

A,B
n (x)).

Let us now consider two nonempty closed convex subsets A and B and define the dis-
placement vector

v := PB−A(0) for the pair (A,B) . (2.2)
It is clear that if A∩B ̸= ∅, then E = F = A∩B and the displacement vector for the pair
(A,B) is null. We denote by Fix(T ) the set of all fixed points of an operator T : H → H.
Recalling from (1.1) the definition of the best approximation sets E and F we have:
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Fact 2.5 ([2, Fact 1.1]). Suppose that H is a Hilbert space and that A,B are nonempty
closed convex subsets of H. Then:

(i) ∥v∥ = dist(A,B) and E + v = F ;
(ii) E = Fix(PAPB) = A ∩ (B − v) and F = Fix(PBPA) = B ∩ (A+ v);
(iii) For every e ∈ E and f ∈ F we have:

PBe = PF e = e+ v and PAf = PEf = f − v.

2.3. Regularity and d-stability for a pair of convex sets. We shall now state two
notions of regularity for a pair of nonempty closed convex sets A and B, which have been
introduced in [2] to ensure convergence in norm for the alternating projection algorithm
(see also [4]).

Definition 2.6 (regular and boundedly regular pair). Let A and B be two nonempty closed
convex subsets of a Hilbert space H, such that the corresponding best approximation sets
E and F are nonempty.
The pair (A,B) is called:

(i) regular if for every ε > 0 there exists δ > 0 such that for every x ∈ H we have:

max { dist(x,A), dist(x,B − v) } ⩽ δ =⇒ dist(x,E) ⩽ ε . (2.3)

(ii) boundedly regular, if for every bounded set S ⊂ H and ε > 0 there exists δ > 0
such that (2.3) holds for every x ∈ S.

Bounded regularity condition is always fulfilled in finite-dimensions (see [2, Theorem 3.9]).
We refer the reader to [2] for concrete examples of pair of sets satisfying (or failing to sat-
isfy) properties (i) and (ii).
The following statement shows that bounded regularity is equivalent to regularity whenever
the best approximation sets E, F are bounded, see [6, Prop. 3.2].

Proposition 2.7. Let A,B be nonempty closed convex subsets of a Hilbert space H. If the
pair (A,B) is regular, then it is also boundedly regular (and E,F are nonempty). Moreover,
if E is bounded, the converse also holds.

The next result follows from [2, Theorem 3.7] and [6, Theorem 4.9]. Indeed, recalling
Definition 1.1 we have:

Theorem 2.8. Let A,B be nonempty closed convex subsets of a Hilbert space H so that
the pair (A,B) is regular. The following assertions hold:

(i) The alternating projection method converges in norm;
(ii) If E, F are bounded, the pair (A,B) is d-stable.

3. Main Results

In this section, our aim is to prove Theorem A. To this end, we are going to make
use of several intermediate results and technical lemmas, which we are going to obtain
progressively. Let us start with the following important intermediate result that provides a
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framework under which a sequence generated by the alternating projection method remains
in a 2-dimensional space.

Lemma 3.1 (keeping iterations in a 2-dim space). Let z, w be two nonzero elements of a
Hilbert space H such that ⟨w, z⟩ = 0 and define functions:

x 7→ f(x) = ⟨z, x⟩ and x 7→ f̂(x) = ⟨z + αw, x⟩ , for α :=
∥z∥2

∥w∥2
. (3.1)

Let further A,B be nonempty closed convex subsets of H such that

[z, w] ⊆ A ⊆
[
f̂ ⩾ f̂(w)

]
and [0, w] ⊆ B ⊆ [f ⩽ 0]. (3.2)

Then the alternating projection method starting from a0 := PA(0) generates a sequence that
converges to w, that is:

lim
n→∞

ΠA,B
n (PA(0)) = lim

n→∞
ΠB,A

n (0) = w ∈ A ∩B .

Proof. We claim that:
(i) if a ∈ [z, w] then PB(a) ∈ [0, w] ;
(ii) if b ∈ [0, w] then PA(b) ∈ [z, w].

To prove (i), observe that P[f⩽0](a) = P[f=0](a). Since P[f=0](z) = 0 and P[f=0](w) = w, by
Fact 2.4(a), we have that P[f=0](a) ∈ [0, w]. The proof of (i) follows by our assumptions
and by Fact 2.4(b).
To prove (ii), observe that P[f̂=f̂(w)](−αw) = z and P[f̂=f̂(w)](w) = w. Arguing as in the
proof of (i), we have that if b ∈ [−αw,w] then PA(b) ∈ [z, w]. In particular, (ii) holds and
the claim is proved.

Therefore, setting
Ã := [z, w] and B̃ := [0, w].

we deduce that
ΠA,B

n (PA(0)) = ΠÃ,B̃
n (PA(0)) .

Since ΠÃ,B̃
n (PA(0)) → w as n → ∞ (see, e.g., [2, Fact 1.2]), the proof is complete. ■

We shall now consider two nonempty closed convex sets A and B that are separated by
a functional and show that, provided one of them is bounded, we can perturb the sets to
obtain a setting in which the previous lemma can be applied.

Lemma 3.2. Let A,B be nonempty closed convex subsets of H such that for some f ∈ SH∗,
β ∈ R and r ⩾ 1 we have:

sup f(B) ⩽ β ⩽ inf f(A) and A ⊂ rBH .

Let further p, w ∈ [f = β], p ̸= w and suppose that for some δ > 0

(p+ δBH) ∩ A ̸= ∅, (p+ δBH) ∩B ̸= ∅, (w + δBH) ∩ A ̸= ∅, (w + δBH) ∩B ̸= ∅ .
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Then there exist closed convex sets Â, B̂ such that

DH(A, Â) ⩽ 3δ and DH(B, B̂) ⩽ 3δ (3.3)

so that the corresponding alternating projection sequence satisfies:{
ΠB̂,Â

n (p)
}

n⩾1
⊂ [f = β] and lim

n→∞
ΠB̂,Â

n (p) = w.

Proof. Without any loss of generality, we may assume that p = 0 and consequently β = 0.
Define

B̂ = (B + 3δBH) ∩ [f ⩽ 0] .

Since DH(B,B + 3δBH) ⩽ 3δ and B ⊆ [f ⩽ 0], we have B ⊂ B̂ ⊂ B + 3δBH and hence

DH(B, B̂) ⩽ 3δ.

Set ε0 = min{1, ∥w∥}, let u be an element in SH representing the functional f ∈ SH∗ (that
is, f(·) = ⟨u, ·⟩), and define:

f̂(x) = ⟨u+ θw, x⟩ = f(x) + θ⟨w, x⟩, x ∈ H, where θ =
δε0

r∥w∥2
. (3.4)

Since ∥u∥ = 1 and ⟨u,w⟩ = 0, we have ∥f̂∥ > 1. Moreover, for every a ∈ A we have:

f̂(a) = f(a) + θ⟨w, a⟩ ⩾ −θ∥w∥ ∥a∥. (3.5)

We now consider the set

Â = (A+ 3δBH)
⋂ [

f̂ ⩾ f̂(w)
]
.

Claim. DH(A, Â) ⩽ 3δ.

Proof of the claim. Since Â ⊂ A + 3δBH, we have e(Â, A) ⩽ 3δ. Let now a ∈ A. If
a ∈

[
f̂ ⩾ f̂(w)

]
, then a ∈ Â, while if f̂(a) < f̂(w), we set ã = P[f̂⩾f̂(w)](a) = P[f̂=f̂(w)](a).

Then f̂(ã) = f̂(w) = δε0r
−1 and we obtain from (3.5) that

∥ã− a∥ =

∣∣∣f̂(w)− f̂(a)
∣∣∣

∥f̂∥
⩽ f̂(w)− f̂(a) ⩽ 2δ.

It follows that ã ∈ Â, whence e(A, Â) ⩽ 2δ and the claim follows.

Finally, consider the triangle with vertices 0, w and z := δε0
r
u. By the definition of the

sets Â and B̂, we deduce that

[0, w] ⊂ B̂ and
[
δε0
r
u, w

]
⊂ Â.

Therefore, we can apply Lemma 3.1 for the sets Â, B̂ and for

z =
δε0
r
u, and α =

∥z∥2

∥w∥2
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to conclude that
lim
n→∞

ΠÂ,B̂
n

(
PÂ(0)

)
= lim

n→∞
ΠB̂,Â

n (0) = w.

The proof is complete. ■

We are now ready to establish our main result. For the reader´s convenience, we shall first
do so under the additional assumption that the sets A, B are separated by a functional
f ∈ H∗. This assumption, which will eventually be dropped in the sequel, simplifies
considerably the proof, allowing us to outline the geometrical features of the arguments.
We recall from (1.1) and (2.2) the definitions of the best approximation sets E,F and the
displacement vector for a pair (A,B) of nonempty closed convex sets in H and start by
proving the following technical lemma.

Lemma 3.3. Let (A,B) be a pair of nonempty closed convex sets in H such that

sup f(B) ⩽ 0 = inf f(A) for some f ∈ SH∗ .

Assume further that E,F are nonempty, bounded and the pair (A,B) is not regular.
Then, there exist ε0 > 0, r > 0 and sequences

{δn}n⩾1 ⊂ (0,+∞) with lim
n→∞

δn = 0 and {wn}n⩾1 ⊂ ker f ∩ (E + rBH)

such that:

dist(wn, E) > ε0 and max
{
dist(wn, A), dist(wn, B − v)

}
⩽ δn .

Proof. We shall show the result for the case A ∩ B ̸= ∅. The general case follows by an
easy adaptation of the same arguments.
Since the pair (A,B) is not regular, there exist {w′

n}n⩾1 ⊂ H and ε0 > 0 such that

dist(w′
n, A ∩B) > 3ε0, for all n ⩾ 1 and lim

n→∞
max {dist(w′

n, A), dist(w
′
n, B)} = 0.

Then setting w′′
n := Pker f (w

′
n), one has

∥w′
n − w′′

n∥ ⩽ max{dist(w′
n, A), dist(w

′
n, B)},

yielding

lim
n→∞

∥w′
n − w′′

n∥ = 0 and lim
n→∞

max {dist(w′′
n, A), dist(w

′′
n, B)} = 0.

Then for some n0 ∈ N sufficiently large and all n ≥ n0 we have:

dist(w′′
n, A ∩B) ⩾ dist(w′

n, A ∩B)− ∥w′
n − w′′

n∥ > 2ε0 .

We now pick wn ∈ [w′′
n, PA∩B(w

′′
n)] so that ε′0 < dist(wn, A ∩ B) < ε′0 + 1. Therefore, since

A∩B is bounded, there exists r > 0 such that wn ∈ (A∩B) + rBH. Finally, by convexity
of the sets A and B we have

δn := max{dist(wn, A), dist(wn, B)} ⩽ max {dist(w′′
n, A), dist(w

′′
n, B)}

and the proof is complete. ■
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We are now ready to establish the result under the additional assumption that the sets are
separated by a linear functional.

Theorem 3.4. Let A,B be nonempty closed convex subsets of H such that A ∩ B is
nonempty and A is bounded. Assume further that for some f ∈ SH∗ we have

sup f(B) ⩽ 0 ⩽ inf f(A).

If the pair (A,B) is not regular, then (A,B) is not d-stable.

Proof. We can assume that for any initial point, the alternating projection sequence with
respect to the sets A, B converges, because, otherwise, the pair (A,B) is already not
d-stable. Therefore, for every a0 ∈ H one has

lim
n→∞

dist
(
ΠA,B

n (a0) , A ∩B
)
= 0. (3.6)

By Lemma 3.3, there exist ε0 > 0, r > 0, a sequence of positive numbers {δn}n with δn → 0
and a sequence {wn}n⩾1 ⊂ ker f ∩ rBH such that

dist(wn, A ∩B) > 3ε0 and max
{
dist(wn, A), dist(wn, B)

}
⩽ δn −→

n→∞
0 .

We can assume that δn ⩽ ε0, for all n ∈ N. In view of (3.6), the alternating projection
sequence starting from w1 converges to some point p1 ∈ A∩B. Let n1 ∈ N be the smallest
integer such that

p̃1 := ΠA,B
n1

(w1) ∈ p1 + ε0BH .

We shall now show that there exist two closed convex sets Â1 and B̂1 which are 3δ2-close
(with respect to the Hausdorff distance DH) to the initial sets A and B, respectively, such
that the iterations of the corresponding alternating projection method, starting from p̃1,
bring us sufficiently close to the point w2. To this end, notice that p1 ∈ A ∩ B ⊂ ker f ,
w2 ∈ ker f and w2 + δ2BH has nontrivial intersection with both sets A and B. Therefore,
we can apply Lemma 3.2 for δ := δ2 ⩽ ε0 to obtain closed convex sets Â1 and B̂1 such that

DH(A, Â1) ⩽ 3δ2 , DH(B, B̂1) ⩽ 3δ2 and lim
n→∞

ΠÂ1,B̂1
n (p1) = w2.

Let now m1 ∈ N be the smallest integer such that

w̃2 := ΠA,B
m1

(p1) ∈ w2 + ε0BH .

Since ∥p1 − p̃1∥ ⩽ ε0 and the projection operators PÂ1
, PB̂1

are non-expansive, we deduce

q2 := ΠÂ1,B̂1
m1

(p̃1) ∈ w̃2 + ε0BH .

Consequently, ∥q2 − w2∥ ⩽ 2ε0 and since d(w2, A ∩B) > 3ε0 we get d(q2, A ∩B) > ε0.
Concatenating the sequences:

{ΠA,B
n (w1)}n⩽n1 (joining w1 to p̃1) and {ΠÂ1,B̂1

n (p̃1)}n⩽m1 (joining p̃1 to q2)

we obtain a finite sequence of variational alternating projections remaining entirely outside
the set (A ∩B) + ε0BH.
We can now iterate this process by considering the alternating projection sequence for the
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initial sets A and B, starting from the point q1. In view of (3.6) this sequence converges
to some point of the intersection A ∩B, that is:

lim
n→∞

ΠA,B
n (q1) := p2 ∈ A ∩B.

Continuing in this way, we generate two sequences {An} and {Bn} of closed convex sets of
the form

{An}∞n=1 :=

A, . . . , A︸ ︷︷ ︸
n1 times

, Â1, . . . , Â1︸ ︷︷ ︸
m1 times

, A, . . . , A︸ ︷︷ ︸
n2 times

, Â2, . . . , Â2︸ ︷︷ ︸
m2 times

, A, . . . , A︸ ︷︷ ︸
n3 times

, Â3, . . . , Â3︸ ︷︷ ︸
m3 times

, . . .


{Bn}∞n=1 :=

B, . . . , B︸ ︷︷ ︸
n1 times

, B̂1, . . . , B̂1︸ ︷︷ ︸
m1 times

, B, . . . , B︸ ︷︷ ︸
n2 times

, B̂2, . . . , B̂2︸ ︷︷ ︸
m2 times

, B, . . . , B︸ ︷︷ ︸
n3 times

, B̂3, . . . , B̂3︸ ︷︷ ︸
m3 times

, . . .


respectively, for which the variational alternating projection sequence starting from w0 and
projecting successively onto these sets is not converging. This shows that the pair (A,B)
is not d-stable. ■

Remark: Theorem 3.4 still holds in the case where A∩B = ∅ and the best approximation
sets E and F are nonempty and bounded: in fact, the separation is now provided by
the hyperplane which is orthogonal to the displacement vector v (see (2.2)) and a similar
procedure to the above can be applied. Moreover, proceeding as in the proof of forthcoming
Theorem 3.7, it is possible to omit the assumption that A is bounded.

We shall now establish the main result of our paper in its full generality, removing the
additional assumption that the closed convex sets A and B can be separated. For the
proof, we need to recall the notion of algebraic interior of a set.

Definition 3.5. Let C ⊆ H be a nonempty set. The algebraic interior of C, denoted by
alg intC, is the set of all points c ∈ C such that for every u ∈ SH there exists εu > 0 such
that [c, c+ εuu) ⊆ C.

We recall that a set C ⊆ H is called absorbing if for every x ∈ H, there exists a positive
number α such that x ∈ tC whenever t > α. It is easy to see that x ∈ alg intC if and
only if C − x is absorbing. Moreover, if C is a convex set such that intC ̸= ∅ then,
alg intC = intC.
We also need the following well-known corollary of Baire Theorem.

Fact 3.6 (see, e.g., [1, Corollary 3.28]). If a complete metric space is a countable union of
closed sets, then at least one of them has a nonempty interior.

Theorem 3.7. Let A,B be nonempty closed convex subsets of H such that A ∩ B is
nonempty and bounded. Suppose that the pair (A,B) is not regular. Then the pair (A,B)
is not d-stable.
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Proof. As in the proof of Theorem 3.4, without loss of generality we may assume that the
alternating projection sequence relative to the sets A and B converges for any starting
point, that is, for every a0 ∈ H, (3.6) holds. We can also assume that 0 ∈ A ∩B.
Since the pair (A,B) is not regular and A∩B is bounded, by [6, Proposition 3.2] the pair
(A,B) is not boundedly regular. Therefore, there exist r > 1, ε ∈ (0, 1) and sequences
{δn}n≥1 ⊂ (0, ε/3) with δn → 0 and {tn}n ⊂ (r − 1)BH such that:

A ∩B ⊂ (r − 1)BH dist(tn, A ∩B) ⩾ 3ε δn := max {dist(tn, A), dist(tn, B)} .
Let {rh}h ⊂ (r,∞) be a sequence of real numbers such that rh → ∞ and take an arbitrary
point q0 ∈ H. Let n1 ∈ N be such that

dist
(
ΠA,B

n1
(q0) , A ∩B

)
< ε.

Denote s1 = ΠA,B
n1

(q0), let s′1 ∈ A ∩B be such that ∥s1 − s′1∥ < ε and set

A1 = A ∩ r1BH and B1 = B.

Claim. 0 ̸∈ alg int (A1 −B1).

Proof of the claim. Let us first observe that since the pair (A1, B1) is not regular, by
[2, Corollary 4.5], we have 0 ̸∈ int (A1 − B1). Notice further that since A1 is w-compact,
the set A1 − B1 is closed and convex. Let us suppose, towards a contradiction, that
0 ∈ alg int (A1−B1). Then, A1−B1 would be an absorbing set and consequently ∪∞

n=1n(A1−
B1) = H. In this setting, Fact 3.6 would yield that int (A1 − B1) ̸= ∅. Since (A1 − B1) is
convex, we would have 0 ∈ alg int (A1 − B1) = int (A1 − B1), a contradiction. Therefore,
the assertion of the claim holds.

It follows that there exists u1 ∈ SH such that, for every θ > 0, we have A1∩ (B1+θu1) = ∅.
In particular, the closed convex sets A1 and (B1 + δ1u1) are disjoint and A1 is w-compact.
By the Hahn-Banach theorem there exists f1 ∈ SH∗ and α1 ∈ R such that

sup f1 (B1 + δ1u1) ⩽ α1 ⩽ inf f1 (A1) .

Since s′1 ∈ A1 and s′1 + δ1u1 ∈ (B1 + δ1u1), there exists p1 ∈ [s′1, s
′
1 + δ1u1] such that

f1(p1) = α1. It follows that

(p1 + δ1BH) ∩ A1 ̸= ∅, (p1 + δ1BH) ∩ (B1 + δ1u) ̸= ∅.
Similarly, let a1 ∈ A1 and b1 ∈ B1 be such that ∥a1 − t1∥ ⩽ δ1 and ∥b1 − t1∥ ⩽ δ1. Since
b1 + δ1u1 ∈ (B1 + δ1u1), there exists w1 ∈ [a1, b1 + δ1u1] such that f1(w1) = α1. Since
∥b1 + δ1u1 − t1∥ ⩽ 2δ1, we have ∥w1 − t1∥ ⩽ 2δ1. Recalling that dist(t1, A1) < δ1 we obtain

(w1 + 3δ1BH) ∩ A1 ̸= ∅ and (w1 + 3δ1BH) ∩ (B1 + δ1u1) ̸= ∅.

Applying Lemma 3.2 we obtain two (perturbed) closed convex sets Â1, B̂1 such that

DH

(
A1, Â1

)
⩽ 9δ1 and DH

(
B1 + δ1u1, B̂1

)
⩽ 9δ1,

and such that ΠÂ1,B̂1
n (p1) → w1 as n → ∞. Notice that

DH

(
A ∩ r1BH, Â1

)
⩽ 9δ1 and DH

(
B, B̂1

)
⩽ 10δ1.
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Since
dist (w1, A ∩B) ⩾ dist (t1, A ∩B)− ∥w1 − t1∥ ⩾ 3ε− 2δ1 > 2ε+ δ1,

there exists m1 ∈ N such that

dist
(
ΠÂ1,B̂1

m1
(p1) , A ∩B

)
> 2ε+ δ1.

Since ∥p1 − s1∥ ⩽ ε+ δ1, we have ∥ΠÂ1,B̂1
m1

(s1)− ΠÂ1,B̂1
m1

(p1) ∥ ⩽ ε+ δ1 and hence

dist
(
ΠÂ1,B̂1

m1
(s1) , A ∩B

)
⩾ dist

(
ΠÂ1,B̂1

m1
(p1) , A ∩B

)
− (ε+ δ1) ⩾ ε.

Let us finally set
q1 = ΠÂ1,B̂1

m1
(s1) = ΠÂ1,B̂1

m1

(
ΠA,B

n1
(q0)

)
.

Iterating the same argument as above, we can inductively obtain a sequence of sets
Âh, B̂h ⊂ H, together with points qh ∈ H and positive integers nh,mh such that, for
every h ∈ N, we have:

(i) DH

(
A ∩ rhBH, Âh

)
⩽ 9δh and DH

(
B, B̂h

)
⩽ 10δh;

(ii) qh+1 = ΠÂh,B̂h
mh

(
ΠA,B

nh
(qh)

)
.

To prove that the pair (A,B) is not d-stable, let us consider the sequence {Ak}k of closed
convex sets in H defined byA, . . . , A︸ ︷︷ ︸

n1 times

, Â1, . . . , Â1︸ ︷︷ ︸
m1 times

, A, . . . , A︸ ︷︷ ︸
n2 times

, Â2, . . . , Â2︸ ︷︷ ︸
m2 times

, A, . . . , A︸ ︷︷ ︸
n3 times

, Â3, . . . , Â3︸ ︷︷ ︸
m3 times

, . . .


and the the sequence {Bk}k of closed convex sets in H defined similarly byB, . . . , B︸ ︷︷ ︸

n1 times

, B̂1, . . . , B̂1︸ ︷︷ ︸
m1 times

, B, . . . , B︸ ︷︷ ︸
n2 times

, B̂2, . . . , B̂2︸ ︷︷ ︸
m2 times

, B, . . . , B︸ ︷︷ ︸
n3 times

, B̂3, . . . , B̂3︸ ︷︷ ︸
m3 times

, . . .


It follows from (i) and Fact 2.3 that the sequences {Âh}h and {B̂h}h Attouch-Wets con-
verge to the sets A and B respectively. Therefore, so do the sequences {Ak}k and {Bk}k.
Consequently, considering the perturbed alternating projection sequences {ah} and {bh},
with respect to {Ah}h and {Bh}h and with starting point q0, we infer from (ii) that:

akN = qN+1 where kN =
N∑

h=1

nh +mh.

Since kN → ∞ as N → ∞ and dist (qN+1, A ∩B) ⩾ ε, we deduce that the pair (A,B) is
not d-stable. The proof is complete. ■

The above result provides a full proof of Theorem A and answers positively the open
problem considered in Problem 1.2.
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4. Open Problems and Remarks

We established the equivalence between regularity and d-stability for a pair of closed convex
subsets (A,B) of H provided that A∩B is nonempty and bounded (or more generally, the
best approximation sets E and F are nonempty and bounded). Example 5.2 in [6] shows
that regularity does not imply d-stability of the pair (A,B) when A ∩ B is unbounded,
even in a finite-dimensional setting. The problem of whether d-stability implies or not the
regularity of (A,B) remains open.
Another interesting question is to determine if there exists a weaker regularity condition on
(A,B) which is equivalent to the norm convergence of the alternating projection method.
The convex feasibility problem for more than two closed convex sets is a rich field of re-
search, where the order (and the frequency) on which the alternating projections are taken
would potentially lead to different conclusions and unexplored notions of regularity.
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