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Abstract. We analyze an algorithm for assigning weights prior to scalarization in discrete
multi-objective problems arising from data analysis. The algorithm evolves the weights (the
relevance of features) by a replicator-type dynamic on the standard simplex, with update
indices computed from a normalized data matrix. We prove that the resulting sequence con-
verges globally to a unique interior equilibrium, yielding non-degenerate limiting weights.
The method, originally inspired by evolutionary game theory, differs from standard weighting
schemes in that it is analytically tractable with provable convergence.
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1 Introduction, data problem, and theoretical results

In many applied domains—such as economics, energy systems, technological design, and consumer
recommendation—the relative importance of features describing alternatives is often unknown and
must be inferred from data or performance criteria.

We analyze an algorithm recently introduced in [22, Section III] for estimating the relative impor-
tance of dataset features. The feature weights are modelled as probability vectors and are iteratively
updated from an initial distribution according to a replicator-type dynamic. The method is inspired
by evolutionary game theory: features are interpreted as players whose weights evolve according to
their relative performance, whereas the update rules depend on strategy functions determined by
the data type. Here, we restrict attention to two simple strategies: in the first strategy features with
strong variation should increase in weight; in the second one, datasets penalize over-reliance on a
single feature. Following mathematical folklore and the so-called No Free Lunch theorem—here in-
terpreted as a metatheorem stating that no optimization algorithm is universally superior or able to
solve all problems—we remark that the relevance of the algorithm lies in its behavior on structured
datasets, where inductive biases reflecting feature interactions can be effectively exploited.

We next describe the mathematical problem of assigning weights to dataset features and introduce
the proposed algorithm. Related literature is then reviewed. For readability, the proofs are deferred
to Section 2. An illustrative numerical example is presented in Section 3, while analogies with genetic
algorithms and evolutionary systems are discussed in Section 4.
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1.1 The data problem

Consider a finite set X = {z1,...,z,} C R™ representing the available choices of a rational agent.
The set can also represent different datasets. For each j € {1,...,m}, the number z;; € R represents
a feature of option/dataset ¢ € {1,...,n}. The agent seeks to choose an option that maximizes some
features and minimizes others, however this is not always possible and one seeks for a combined
concept of optimality in this context. This problem falls within the class of so-called multi-objective
problems. While this framework offers several notions of solution—such as Pareto optima—these do
not capture the relative importance of each feature. In this paper, we analyze the possible relevance
(quantified as an index) of features that can be obtained from the data of the problem.

Below, we consider an algorithm that outputs a probability vector v € R™, where each v; represents
an index of the relevance in optimizing feature j € {1,...,m}. The algorithm is inspired by evolu-
tionary game theory, drawing an analogy in which datasets correspond to organisms and features
to genes; this interpretation is described in detail in Section 4.

The input of the algorithm can be thought of as a matrix

11 12 .. T1im
€21 T22 ... T2m
Inl Tp2 -+ Tpm

To effectively process data and provide a consistent interpretation across features, the raw data is
transformed into a normalized representation. The purposes of this normalization are twofold. First,
we want to ensure that all feature values lie in a consistent scale, and second, we want to provide
data with a percentage-based interpretation, thereby requiring @;; € [0,1] for all ¢ € {1,...,n} and
je€{1,...,m}. Once the columnwise normalizations are fixed for a problem class, any dataset with
the same structure can be processed dynamically without further manual tuning.

Consider the normalization represented by a matrix

G171 P12 ... Pim

Doy Do ... Doy

D1 P .. Pom
with entries in [0, 1]. Such normalization transforms optimization of features to a multi-objective
problem. For example, when dealing with matrices X containing non-negative data, for a column

j €41,...,m} not identically zero, a possible transformation could be given by
s
Qi =1—- —L— for all i€ {1,...,n}.
max s
se{l,...,n}

This transformation applies an inverted normalization to the column. Each entry is scaled by its
feature’s maximum, and this ratio is subtracted from 1. Consequently, @;; € [0, 1], where 0 denotes
the feature’s maximum value (no deviation) and 1 signifies an entry of 0 (100% deviation). This
yields a measure that is useful when the objective is to minimize a feature rather than maximize it.

1.2 Algorithm and convergence results

Let us begin with some notation. We denote by

K™l i= 0y eR™y; >0 Ve {l,...,m} and > ;=1
j=1
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the standard simplex in R™. The elements of X~ correspond to the scalarization vectors (feature
weights) of the multi-objective problem. We write

N 1 n
@j = E Z@U
=1

for the column average of the matrix @ € M, «.»(R). Notice that each average lies in the interval
[0, 1].

For each j € {1,...,m}, consider the functions A?°m7 A?al : K™~1 — R given by

Adem () 1= (qﬁj - %) and  AY(y) := —2(%@ - %iva)
s=1

The quantities A?"m (dominance term) and A;’al (balanced term) can be viewed as indices that
evaluate the contribution of feature j € {1,...,m} under different criteria. The dominance term
measures whether a feature tends to be high or low on average. It is positive when the column
average is above 0.5, and its effect grows with the weight given to that feature. In this sense, it
rewards features that are both strongly weighted and above the midpoint of the scale. The balance
term compares the weighted contribution of a feature with the overall weighted mean across all
features. It is positive when the feature contributes less than the global mean, and negative when
it contributes more. This acts as a correction, it discourages features from dominating too strongly
and favors those that are closer to balance with the rest.

We also consider the function A; : K71 — R given by

om a 3 2 . =
45(7) = AP() + Ay) = = (85 +3) + — D18, (1)
s=1
This is an index of the relative contribution of feature j € {1,...,m}, combining the effects of the

dominance and balance terms.

Algorithm 1

Require: Initial weight 4° € K™ 1.
1: Initialize v +— ~°

2: for Kk € N do

3: Compute A +— A(vy)

4: for j < 1 to m do

5: Update v; <— 7v;(1 + 4;)
6: end for

T Normalize v <— v/ >0 | s
8: end for

Given an initial weight v° € K™, we say that (Y*)reny € K™7! is a sequence generated by
Algorithm 1 if, for each k£ € N,

7 (1+4;0%)

m ?

oA (1+A(09)

s=1

Ai(v")+1>0 and %l_wl = Vie{l,...,m}.
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We see that the update rule defines a discrete dynamical system on the simplex. At each step, the
weight of feature j is multiplied by a factor proportional to 1 + A;(y*), and the whole vector is
renormalized so that the updated weights again lie in K™~ !. In this way, features with positive
indices A;(v*) are reinforced, while those with negative indices are diminished. This mechanism is
reminiscent of the spirit of replicator dynamics, where the evolution of a distribution is driven by
relative performance, with better-performing features gaining weight at the expense of weaker ones.

Proposition 1 (Non-degeneracy of limit points of Algorithm 1). Let the relative interior of
the standard simplex be denoted by

relint K™~ := {y € R™|y; > 0 V5 € {1,...,m} and Z%‘ =1
i=1

Let (Y*)ren be a sequence generated by Algorithm 1. If 4° € K™~ belongs to relint K™, then any
accumulation point of (v*)ren also belongs to relint K™~1.

The previous proposition shows that the replicator-type updates preserve positivity of the weights
in the limit; once the process starts in the relative interior of the simplex, it never assigns zero
weight to any feature in the limit. Geometrically, the dynamics avoid collapsing onto the boundary
of the simplex. This ensures that no feature is ultimately discarded.

With this invariance established, we now turn to the asymptotic behavior of the sequence. The key

question is whether the updates converge to a stable distribution inside the simplex, rather than
oscillating or drifting indefinitely.

Theorem 1 (Convergence of Algorithm 1 to an equilibrium). Let (Y¥)ren be a sequence
generated by Algorithm 1 with v° € relint (ICm_l). Then, there exists a unique ¥* € relint (lCm_l)
such that v* — v* as k — +00. Moreover,

-1

1
— % Vie{l,....m}. (2)
s= 1@ +§

Formula (2) reveals that the limiting weight of each feature depends monotonically on its column
average; it decreases as the average increases. In particular, features with larger averages receive less
weight, while those with smaller averages receive more.

Equilibrium y~ Replicator dynamics on simplex
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Fig. 1: Illustration of the replicator-type feature weighting algorithm.



Feature weighting for data analysis via evolutionary simulation 5

Since the limiting weights generated by the algorithm remain strictly positive, they can be used
to scalarize the multi-objective problem of maximizing or minimizing all features, thereby allowing
recovery of Pareto—optimal points from the dataset.

Corollary 1 (Pareto optimality of the equilibrium weights). Assume that the normalization
is coordinatewise order—preserving, i.e., for each j € {1,...,m} and all i,k € {1,...,n}

Tij Ly = Dy < Dy

Let v* € relint (K™~ 1) be the solution obtained by Theorem 1 and let X = {x1,...,z,} CR™ be the
original dataset. Let F : X — R™ be the multi-objective function given by

F(m,) = (.’IJ“, N 7xim)~

Then, any index i* € {1,...,n} mazimizing the scalarization

m
. *
= E v Pij
Jj=1

yields a Pareto-optimal element x;« € X for the problem of maximizing F.

The same conclusion holds if the objective is to minimize all features instead of maximize them,
with the adequate changes mutatis mutandis.

1.3 Related literature

Our algorithm determines (learns) a probability vector of feature weights by a multiplicative (repli-
cator—type) update on the simplex and admits a closed-form interior limit. This places the algorithm
between evolutionary multi-objective optimization, which typically evolves solutions, and feature-
weighting methods in machine learning, which estimate weights but rarely via a dynamical system.

In evolutionary multi-objective optimization (EMO), many algorithms differ in how they approx-
imate Pareto fronts. In [24] a comparison of methods is given, noting common mechanisms such
as Pareto-dominance ranking, external archives, performance indicators, and decomposition into
scalar subproblems. Algorithms such as the Non-dominated Sorting Genetic Algorithm II (NSGA-
IT) [7] and the Strength Pareto Evolutionary Algorithm 2 (SPEA2) [25] rely on Pareto-based
strategies without incorporating weight vectors. In contrast, the Multi-Objective Evolutionary Al-
gorithm based on Decomposition (MOEA /D) [23] explicitly uses weight vectors to decompose a
multi-objective problem into scalar subproblems. These weight vectors determine search directions
and, to a large extent, the distribution of the final solution set [17]. In its original form, MOEA /D
uses fixed weight vectors, but subsequent research has introduced adaptive strategies. For exam-
ple, paA-MOEA /D (Pareto-adaptive MOEA /D) [14] adjusts weight vectors using geometric features
of the estimated Pareto front; DMOEA/D (Diversity-maintained MOEA /D) [12] employs projec-
tion/equidistant interpolation of reference (weight) vectors from the current nondominated set to
preserve diversity; and MOEA /D with Adaptive Weight Adjustment (MOEA /D-AWA) [20] period-
ically removes weight vectors in crowded regions and inserts new ones in sparse regions during the
search. Other notable contributions include the Reference Vector Guided Evolutionary Algorithm
(RVEA) [3] and its later variants. Our approach diverges from the ones previously mentioned. In-
stead of adapting weight vectors to shape search directions, we evolve feature weights from data,
with the interior equilibrium itself providing a scalarizer.

In machine learning, classical filter methods assign fixed importances to features. For instance,
Relief [15] uses nearest-neighbor contrasts, and ReliefF' [16] extends this to multi-class and noisy
data. Another popular method, mRMR, (short for Minimum Redundancy — Maximum Relevance),
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selects features that are both highly informative about the target and minimally redundant with
each other, typically using mutual information or F-statistics for relevance and pairwise redundancy
measures [19]. In unsupervised learning, feature-weighted k-means methods span decades of variants
[8]. Evolutionary strategies are also present, e.g., estimation-of-distribution methods applied to
feature weighting [13], and comparisons between genetic and co-evolutionary schemes [2]. These
methods generally optimize weights empirically but do not define a replicator-style dynamical system
nor provide closed-form equilibria as in our approach.

2 Proofs

2.1 Proof of Proposition 1

We divide the proof in two steps. In the first one, we show that the sequence {y*}ren remains in
the relative interior of X™~!. In the second one, we demonstrate that any accumulation point must
also lie in this relative interior.

Step 1. (The sequence remains in the relative interior of the simplex). We proceed by induction.
For k = 0, 7° € relint(X™~!) by assumption. Assume 7* € relint(X™~!) for some k > 0. From
Algorithm 1,

P14 A"
1+ A4;7%) >0 and 'yf“ m’YJ( i) Vie{l,...,m}.

D oAk (1+ A7)

Since v¥ > 0 and 14+A;(¥*) > 0forall j € {1,...,m}, we obtain that 'ka >0forallyj € {1,...,m}.
Normalization then ensures 77" ¥i+! = 1. Thus v**+1 € relint(K™~ 1).

Step 2. (The accumulation points remain in the relative interior of the simplex). Suppose that
there exists an accumulation point v* € ™! that does not lie in the relative interior. Therefore, we
have 77 = 0 for some j € {1,...,m} and there exists a subsequence (7% )gen of (Y¥)ren converging

to v* with "yf‘* — 0 as { — +00. We will now derive a contradiction.

Let ¢y € N be such that *y;»” < (Qm)_l(??; +1/2)7 for all £ > {y. From the Cauchy-Schwarz

m

inequality we have 7" 72 > 1/m, for any v € K™ . Then, since 5; > 0, an easy calculation
yields that for all £ > £y we have:

L+ 2,001 = DAt a0 = 1 3 017 (B ) ol (24 5)
s=1 s=1
1 k - ].
> — — D+ = .
> 145 (&4 5) > 1

From this, we deduce that, for £ > {g,
e _ 40 4,6M)

nyk" (1+ A ))

This contradicts that *y;“ —> 0 as { — +o0. a
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2.2 Proof of Theorem 1

We will prove that any subsequence of (v*)eny must converge to the same limit, and therefore the
sequence itself converges to that limit. Let (7¥¢)sen be a subsequence of (v¥)en converging to some
~v* € K™~!. From the definition of Algorithm 1, the limit should satisfy

3 (1 X A) =2 (4 4467, W€ fLem,

Since, by Proposition 1, v* belongs to the relative interior of X™~!, the previous expression simplifies
to

iAW) =4;v7), Vie{l,...,m}.
s=1

Set ¢ := Z’y;‘As(fy*). Recalling (1) we have:

s=1
* e 1 2 . * 3 .
Aj(V):—Wj(éj-i-i) + EZ%QS, vie{l,...,m}.

s=1

Let us denote, for j € {1,...,m}, 4, := g/fj Jr% and
2 -
B .= — D,

m;%

Then, — Ajv; + B=cforall j € {1,...,m}, so

B—c¢

Vie{l,...,m}.

m
Since Z'y;" =1, we obtain

s=1
" B-c 1
1 = = B — _—
4 ~BIng
Therefore
B-c= (Z I/AS)
s=1
and consequently
v , vie{l,...,m}

The result follows. O
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2.3 Proof of Corollary 1

Define, for each 7 € {1,...,n},
m
Ty = Z’Y;@’Lﬁ
j=1

and choose " € argmax;cy, 3 ri- Suppose x;« is not Pareto-optimal for maximizing our multi-
objective function F. Then there exists k € {1,...,n} such that

Tp; > x5 forall je{l,...,m} and xy,, > z;+, for some jo € {1,...,m}.
By the coordinatewise order preservation of the normalization, we have
@kj Zéi*j for aH] € {1,...,’/77,}, and stjo >¢’i*j0'

Since v* € relint(K™ "), we have 7 > 0 for all j € {1,...,m}, hence

e —7ie = Y V) (Pr; — Biej) >0,
j=1

which contradicts the maximality of r;«. Therefore z;« is Pareto-optimal for maximizing F'. (Il

3 An illustrative numerical experiment

We consider a real-world dataset of 15 office listings for rent in Vienna, collected from the public
real estate platform immoscout24.at. Each listing is described by four numerical features: monthly
rent (in euros), office size (in square meters), number of rooms, and if they have a balcony (which
is here modeled as a binary variable with values 0 and 1). These features are heterogeneous in scale
and meaning, so direct comparison is not meaningful. To address this, we normalize the data into
a matrix @ € [0, 1]15%* such that higher values consistently represent more desirable attributes. For
the rent feature, where lower values are preferred, we apply a shifted inverted normalization:

@il —1_ L1 — Mg xsl- (3)

maXg Tg1

For the features size and rooms (columns 2 and 3), where higher values are preferred, we apply
a normalization relative to their maximum values:
s
;= —=>— forj=23. (4)
mMaXs T

This choice of normalization functions aims to map the real-world dataset to a subset of [0,1] in a
comparable way. In particular, equation (3) and (4) both map to [min, z5;/ max, x;, 1]. For the last
column (balcony), which is already binary and appropriately scaled, no transformation is applied.
This results in a matrix ¢ with entries in [0, 1], where higher values consistently correspond to more



Feature weighting for data analysis via evolutionary simulation 9

desirable properties.

[0.6160 0.3000 0.2069 0.0000
0.8175 0.2891 0.2759 0.0000
0.2529 1.0000 0.4828 0.0000
0.4624 0.7152 0.4138 0.0000
0.4228 0.5478 0.4138 1.0000
0.5368 0.4761 0.4138 0.0000
1.0000 0.2674 0.1379 0.0000

@ = |0.6087 0.3804 0.3448 0.0000
0.2180 0.5000 0.5517 0.0000
0.5218 0.3457 0.2759 0.0000
0.9356 0.2891 0.2069 0.0000
0.1913 0.8326 1.0000 1.0000
0.1938 0.6826 0.4828 0.0000
0.1310 0.7283 0.4828 0.0000

10.7498 0.3587 0.2069 0.0000 |

The original (unnormalized) data is shown in Table 2. Using @, we apply the evolutionary algorithm
described in Subsection 1.2, iterating for N = 10 steps. The resulting feature weight vector ~*
converges rapidly to the analytical limit v* from Theorem 1, as shown in Table 3.

Table 1: Column-wise means @ of the normalized matrix &.

Feature Rent Size Rooms Balcony

Mean 53- 0.5106 0.5142 0.3931 0.1333

The limit point in Theorem 1 is given by
vi =0.2117, ~5 =0.2109, ~; = 0.2395, ~; = 0.3378.

Approximately 33% of the total weight is assigned to the feature ’balcony’. The reason for this
behavior can be understood as ’balcony’ has by far the lowest average, since only two offices have
a balcony. Hence, as discussed in Section 4.5, the fixed point formula from (2) gives the highest
relevance to features with the lowest average. In statistically distributed data, objectives with a
low average tend to have rare and large statistical outliers. The presented evolutionary approach
distributes more weight to these objectives, since it is assumed that rare traits give an organism
an advantage in the evolution. Indeed, in our presented example, having a balcony is exceptionally
rare, making offices with one highly desirable.

Table 2: Apartment dataset including balcony.

Name as advertised Rent (€) Size (m?) Rooms Balcony
Charmantes Altbaubiiro in zentraler Lage 4348 138 3.0 0
Néhe Karntner Strale und Oper zu mieten

Exklusives Biiro in der Borse! 2647 133 4.0 0

Continued on next page
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Name as advertised Rent (€) Size (m?) Rooms Balcony
Wunderschone gerdumige Biirofliche im 7413 460 7.0 0
energieeffizienten Gebaude

Attraktive Biirofliche in ruhiger Griinlage 5644 329 6.0 0
Barrierefreie DG Biiroflache in der Fa- 5979 252 6.0 1
voritenstrafle direkt bei der Ul

Modernes Biiro in zentraler Lage 5016 219 6.0 0
Biirofliche am Ho6chstadtplatz: Sehr gute 1106 123 2.0 0
Infrastruktur im Haus und Umgebung —

U6

Représentatives Altbaubiiro im Palais 4409 175 5.0 0
Schlick zu mieten

Gekiihlte Biirofliche am Bauernmarkt — 7708 230 8.0 0
unbefristet

Gewerbeflache mit Straflenzugang in gen- 5143 159 4.0 0
eralsaniertem Jugendstilhaus

Modernes Biiro/Praxis in Wien: Er- 1650 133 3.0 0
stbezug, 132m?2, TU-Bahn-Niahe, Top-

Ausstattung!

Reprasentatives Biiro direkt am Karlsplatz 7933 383 14.5 1
in der Belle Etage

Représentative Biirofliche oder Praxis 7912 314 7.0 0
beim Schottentor U2/ Servitenviertel

Biiro direkt auf der Dresdnerstrafie im BC 8442 335 7.0 0
20 - Bauteil B zu mieten

Biirofliche im Biirokomplex Nahe Mat- 3218 165 3.0 0

zleinsdorfer Platz zu mieten

To quantify the deviation of the computed weights +* from the uniform baseline, we define the

impact norm as
m

m . 1| =
2]l := mz ol B RSP
j=1
where @- = %Z?:l &;; is the average of column j. This measures the unevenness of weights,

adjusted by the average strength of each feature. The factor m/(m — 1) normalizes the index so that
its maximum is 1, attained when a single feature with average 1 receives all the weight.

To highlight the influence of the top-performing agents, we define the qualified impact norm

1 1
o R b |,
7 m‘ <|X*| 2 J)

r,eX*

m

). == ——=>"

j=1

where X* C X denotes the 10% of agents with the highest row-wise averages quSi = % Z;"Zl D;;.
Note that this index is not a norm in the usual sense. This version emphasizes how the best listings
are affected by feature weights. In this experiment, we compute

|®| = 0.0739 and ||®|, = 0.1785.

This indicates a mild deviation from uniform weighting, with more pronounced feature bias among
the best-performing listings.
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We evaluate the contribution of each feature using the feature impact
G = (max@ij — min@ij) V-
K3 K3
The values for this example are given by

G =0.18397, (o =0.15454, (3 =0.20651, (4 = 0.33780.

As for the weights 7}, also for the feature impact, the feature 'balcony’ dominates the example. This
can be understood since an office cannot have half a balcony, but only 0 or 1. Hence, while other
objectives show a gradual change within a certain range, ’balcony’ has one single step-wise change,
'yes’ or 'no’. Figure 2 illustrates the convergence of the weights v* over the course of 10 iterations.

Table 3: Evolution of feature weights v* over 10 iterations and comparison to the analytical solu-
tion ~*.

Iteration Rent Size Rooms Balcony

0.2500 0.2500 0.2500 0.2500
0.2421 0.2419 0.2497 0.2664
0.2358 0.2354 0.2487 0.2802
0.2307 0.2302 0.2475 0.2917
0.2266 0.2261 0.2462 0.3011
0.2234 0.2228 0.2450 0.3088
0.2209 0.2202 0.2440 0.3149
0.2189 0.2182 0.2431 0.3198
0.2173 0.2166 0.2424 0.3237
0.2161 0.2154 0.2418 0.3267
0.2151 0.2144 0.2413 0.3291
0.2117 0.2109 0.2395 0.3378

© 0w N Ok W N = O

R R I T
o

*

Starting from the uniform initialization v° = (0.25,0.25,0.25,0.25), each coordinate gradually drifts
toward its fixed point value. The weights for Rent, Size, and Rooms decrease slightly and stabilize
near 0.21-0.24, while the weight for Balcony steadily increases, converging to approximately 0.34.
The dashed lines mark the analytical solution vy*, showing that the iterative dynamics approach the
fixed point with monotone convergence in each coordinate. For each office x;, we define an aggregate
score 1; = Zy;l v; Pi;, which evaluates the overall desirability of x; given a weight vector . With

uniform weights, y"form = (0.25,0.25,0.25,0.25), all features contribute equally and produce the
baseline scores ri™*. With v = ~*, the fixed point solution, the scores erOI incorporate the learned
feature importances. Ranking the offices by r; under these two regimes gives the comparison shown
in Table 4.
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Evolution of feature weights over iterations

034
0.32
0.30
—e— Rent
- 0.28 Size
—4+— Rooms
0.26 4 —&— Balcony
024 ocees B s e e —i__
\k\‘
\‘\,‘
0.22 1 e —— - T
0 2 4 6 8 10
Iteration k

Fig. 2: Evolution of feature weights VJ’? over k = 0,...,10. Dashed lines indicate the analytical
solution ~*.

Table 4: Office rankings under uniform weights y"ifor™ —= (0.25,0.25,0.25,0.25) and under v* =
(0.2117,0.2109, 0.2395, 0.3378).

uniform *

Rank Score‘Rent Size Rooms Balc. Score‘Rent Size Rooms Balc.
1(0.755979|7933 383  14.5 1(0.793484|7933 383 14.5 1
2(0.596097|5979 252 6 1]0.641988|5979 252 6 1
3|0.433915|7413 460 7 0]0.380130(7413 460 7 0
4]0.397865|5644 329 6 0]0.347898|5644 329 6 0
5/0.357897|1650 133 3 0/0.313203|5016 219 6 0
6/0.356680({5016 219 6 0]0.308616{1650 133 3 0
710.351331|{1106 123 2 0/0.301152|1106 123 2 0
8|0.345613|2647 133 4 0/0.300664|7912 314 7 0
910.339790| 7912 314 7 0]0.300134(2647 133 4 0

10{0.335508|8442 335 7 0]0.297003|8442 335 7 0
11]0.333501[4409 175 5 0]0.291728(4409 175 5 0
12]0.328854[3218 165 3 0]0.283968(3218 165 3 0
13]0.317420| 7708 230 8 0]0.283780| 7708 230 8 0
14/0.285828| 5143 159 4 0]0.249463|5143 159 4 0
15(0.280716|4348 138 3 0]0.243249(4348 138 3 0

4 Analogies with genetic algorithms and evolutionary systems

Given the fixed point v* from Theorem 1, a natural question is how the update functions A;-iom, A?al,
and the overall update rule are derived. In what follows, we provide an evolutionary interpretation
of the matrix @, which leads directly to the definitions in Section 1.2.

We interpret each agent x; € & as an organism in an evolutionary environment. The goal of
the optimization is then understood as identifying the fittest organism. A natural definition for the
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global fitness of organism 1 is
ri =Y %P, (5)
j=1

where v € K™~ is a weight vector assigning relevance to each feature. We assume that the normal-
ized matrix @ is constructed so that higher values of @;; reflect better performance of organism 4 in
feature j. As all entries of @ lie in [0, 1], it follows that r; € [0, 1] as well. Under this interpretation,
the entry @;; represents the local fitness of organism ¢ with respect to feature j. From an evolution-
ary perspective, we may view each feature as a gene, and -y; as the fitness or strength of expression
of gene j. The global fitness r; thus reflects how well the organism performs, taking into account
both the quality of its features and the importance assigned to them by ~.

In Dawkins [5], one central argument states that genes and not organisms are the ’unit’ of
competition in a species. That means that the more the phenomenological features of a gene help
the overall fitness of an organism, the more successful a gene will be in spreading to a population
through replication. In newer editions of [5] and also in the follow-up Dawkins [6], this focus on
genes is somehow reduced and the trade-off between gene and organism behavior comes stronger
into play.

One of the central paradigms of biological entities in evolution is that they have to efficiently
use the available resources. From an organism point of view, this means that there has to be a
trade-off between beneficial features for reproduction and their cost in terms of resources or energy
consumption. For example, if the energy cost to grow wings is too substantial compared to the gain
of collected food, evolution will not favor their development over the course of generations. From a
mathematical perspective, this process is nothing more than an optimization of genes and organisms
with a fixed overall amount of resources.

In the spirit of the work of Dawkins and in our evolutionary picture of data, let us conduct a
‘thought experiment’: what if, to analyze the fitness of genes and organisms, we convert @ into an
evolutionary simulation, where we iteratively test local and global fitness? To that end, we envision
a virtual, dimensionless 'heap of resources’ and calculate the share of resources a gene obtains. The
more shares a gene can accumulate, the more fit it will be in the next iteration, i.e., the larger the
fitness of the gene ;.

Continuing with an absolute heap size, would lead to unstable and inconsistent behavior, since
the order genes accessing the heap would influence the result. Instead, we continue with a differential
share A; for the jth gene and require (i) larger positive shares A; tend to increase 7; and vise versa,
(ii) the total sum of gene fitness values is constant, (iii) the gene fitness does not change too abruptly
to allow a fair comparison between genes. Taking these conditions into account, we can formulate a
genetic replicator equation:

k k
v (1+ A% .
fy;»H'l = m](—J) Vie{l,...,m}. (6)

Dok (1+Ab)

s=1

As a next step in our evolutionary representation, we have to define the functions A? . As de-
scribed above, in biology, there is an interplay between the genes and organisms in evolution. On
the one hand, evolution in connection with genes can be interpreted as local comparison of fitness
in terms of a single feature. On the other hand, the evolution of organisms in a species can be
understood as a global comparison with respect to all genes available in the population. Hence, also
in our evolutionary interpretation there are two contributions to A;

A;C = A?vgen +A;€70rg
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where A?’gen denotes the gene contribution and A?’Org denotes the organism contribution, respec-
tively.

The functions A% and A?’Org govern the dynamic behavior of the system via the replicator
equations (6). In the evolutionary picture these functions correspond to strategies of individual genes
and organisms. Hence, the function are assembled as

n

k,gen 1 k,gen
Ap® :gZAijg , (7)
=1
k,or 1 - k,or
Aj g:EZAij gv (8)
=1

where Af]?gen, A%mg denote the contribution to the differential share of a single gene or organism,
respectively, and recalling that n denotes the total number of organisms in the system.

In this paper, we will derive a simple variant for the strategy functions Af]?gcn and Afjforg, leaving
more complex strategies for future work. Generally, as conditions for the choice of strategies, we
require that not all gene fitness be shifted to a single gene. In that case a single v;; = 1 while all
other weights in equation (5) would be zero. In the optimization this would not be desirable, since
the information of @;; for j # j' would be lost.

4.1 Gene contribution A%gen

Consider a gene describing a single feature in a real evolutionary system, e.g., the size of an animal
in a species. Further, assuming that larger size is beneficial in the chosen ecosystem, the fitness of
the gene ’size’ in a population can be estimated by taking into account the sizes of all animals in
the population and comparing them to genes describing other features of the animal. Qualitatively
speaking, if for example many large animals in a population are to be found, one can deduct that
size is genetically more important than other features therein.

In addition to the magnitude of a quantity such as size, the importance of the feature in a
previous reproduction cycle also influences the future fitness of a gene in the evolution. Translating
this dynamics to our optimization problem, we define ’"dom’ the dominant gene strategy function

en ,dom 1
A?jg = Afjd = ’y;-c <@ij — 2) . (9)

Note that since Afj?dom is used to compute 'y;““ via equation (6), the linear factor 'yJ]? in equation (9)
is the only sequence-dependence factor that takes the current gene fitness into account for the next
iteration. Additionally, the factor (&;; — %) will yield a positive differential share when &;; > 1/2

and vice versa.
Taking only Af]?dom for A? into account, it can be easily shown that the objective j' with

maximum 52’5; will accumulate all the weight, i.e. v;; = 1. Hence, for a non-trivial result, we need
Afjforg to counter the direct dominant effect of the gene strategy function Afjfdom.

. N k
4.2 Organisms contribution A2

In evolution, organisms with only a few excellent features have difficulties to thrive. It is usually
the lifeforms flexible enough to quickly adapt to a changing habitat to win the day. Applying this
paradigm to our optimization problem &, we need a quantity to measure the dependence of an
organism on a particular gene

fi; = Vi Pij _ Vi Pij
v Zs P)/s@is T

(10)
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Note that the larger p;;, the more the fitness of an organism ¢ depends on a particular gene j.
Furthermore, from an organism perspective, with m features at hand, the ideal share would be
Mij = % forall jel,...,m

Consequently, we obtain as balanced organism strategy function

kor k,bal 1
A & — A = 727‘7; <,U4j — E . (11)

Note that a perfectly balanced organism, where p,;; = i for all j € {1,...,m}, will yield no
differential change to any A%,

4.3 Summary of evolutionary argument

It is important to observe that equation (9) for A¥°™ yields a relative change to the gene fitness 7;.

In particular, for a specific organism 4, a gene j’ can only gain fitness, if §;;/ is larger than the other
®;;, j # j'. Thus, the effect of Afjfgc“ is directly proportional to the rate of asymmetry of an agents

data. In contrast, the minus sign in equation (11) for Af?bal indicates that asymmetry in an agent

is penalized. The total differential share A}; := ARdom 1 AFPal g thus an evolutionary trade-off
between these two effects related to the asymmetry of a feature j° compared to other objectives in
optimization.

Combining all contributions for the dominant strategy, we obtain

om 1 - om = 1
gyt L3 = 3 s (g ) = (%)

1=1

with the mean value 95”, leading into the corresponding definition of Sec. 1.2. Analogously, we
accumulate all contributions for the balanced strategy as

A?,bal _ %ZA%bal _ _% Z (NU _ ) %Z ( ;Z’yséi8>

i=1 i=1

again leading to the corresponding expression in Sec. 1.2.

4.4 Asymptotic behavior in higher dimensions

The update terms A°™ and AP can be interpreted as two competing evolutionary pressures: the
former rewards dominance of feature j across the population, while the latter penalizes imbalance
in how much feature j contributes to the overall fitness of agents. For the algorithm to remain stable
and unbiased as the number of features m grows, both terms should scale similarly with respect to
m. To that end, we examine the asymptotic behavior of the two update components.

As the number of features m increases, and in the absence of strong preference for any particular
one, the weights v; are expected to distribute more evenly across all features. This implies that for
large m, each ~; is typically of order O(1/m). Recall that the dominance term is given by

om ey 1
A(Ji :7j'<¢j_2)7

where 43 is the average value of feature j across all agents. The quantlty 43 — 5 measures how much
the average of feature j deviates from a neutral baseline. Since ¢j remains in the compact set [0, 1]
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as m increases, the product v; (é; — 1) inherits the scaling O(1/m) from ;. We therefore conclude
that
dom __ 1
A =0 (L).

m
This scaling reflects that, as the number of features grows, the influence of each individual feature
on the evolutionary update diminishes—unless that feature significantly deviates from the average.
The balancing term is defined as

a. = 1 S Y
AP =—p (vj@ - Zws> :
s=1

where the factor § = 2 is chosen to ensure that this penalty has the same scale as the dominance
term. The term inside the parentheses measures how much the contribution of feature j deviates
from the average over all features. Since the mean Y .~ v,@, is of order O(1), both terms in the
difference are O(1/m), so the result is again
A= (k).

The choice 8 = 2 reflects a symmetry: since A?‘)m is centered around 1/2, the balancing correc-
tion must be scaled accordingly to counteract overdominance and ensure convergence to a stable
equilibrium. More generally, if the dominance term were centered around a constant a, one would
require S = 1/a to retain this matching. Note that the introduced dimensional argument is a good
analysis tool also for more complex evolutionary strategies. In general, all strategies included in an
algorithm should show the same asymptotic behavior in terms of m to allow for a fair comparison.

4.5 A minimal example and its evolutionary interpretation

Let us investigate the effect of the evolutionary approach on a minimal 2 x 2 example

10
Xi= {0.5 0.5} '

Since the entries are already in the interval [0, 1], we take @ = X. Inserting the mean values &71 =0.75
and P9 = 0.25 into the fixed point formula (2) yields

Ni=0.375, 5 =0.625

Most of the relevance is assigned to the second feature, which has the lower average. In our evolu-
tionary interpretation, this means that a lower average local fitness for a given gene makes its rare,
larger values even more significant.

As before, imagine an animal population where size is a relevant feature described by a specific gene.
Furthermore, assume that the majority of animals in the population are small. Then, a single larger
organism has a decisive evolutionary advantage, since there are only a few competitive opponents
in terms of size when fighting for the available resources.

Let us now investigate variants of the previous example. For each ¢ € [0,0.5], consider the 2 x 2
matrix

10
X(©) = {0.5+5 0.5 —g} :

As before, take (&) = X (€). Note that as £ — 0.5 the matrix takes its maximally asymmetric form

X(0.5) = E 8} .
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Evolution of fixed-point weights
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Fig. 3: Evolution of fixed-point weights 7{ and 5 as a function of &.

Table 5: Evolution of feature weights ~ for 6 values of &.
0 0.3750.625
0.1 0.350 0.650
0.2 0.325 0.675
0.3 0.300 0.700

0.4 0.275 0.725
0.5 0.250 0.750

Table 5 shows the values of v* as a function of £, showing linear behavior with respect to £ with
slope 0.25.

The final values 7§ = 0.25 and 5 = 0.75 are the maximally asymmetric weights for the two
features.

Remark 1. In the extreme case & = 0.5, both features are constant across all samples. From a
purely discriminative perspective, such features carry no information and should be assigned equal
(or zero) weight. However, the evolutionary weighting rule still assigns 77 = 0.25 and v35 = 0.75,
reflecting its inherent bias toward features with lower means. One may view the situation shortly
before everything collapses to 1 or 0 as the more meaningful case, where the rule amplifies small
deviations as rare traits. In the trivial case the unequal weights can be seen as a consequence of
continuity of the formula.

4.6 Relation of evolutionary picture and input data

The method introduced in this paper, relates the raw input data X with a well-defined equilib-
rium «*. The process can be summarized as

input data X — normalized data & — evolutionary fitness — ~*.

Although some information is lost by using only the mean values EFZ to compute v*, there is often
statistical value in comparing different objectives via 5; > (1;;/ In particular, differences in 5;
for j € {1,...,m} often indicate distinct clustering of features in the original data X. In this
sense, the introduced evolutionary approach provides a means to assess the relevance of features in
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multi-objective optimization. It is important to emphasize that this evaluation is not rule-based but
depends solely on the input data X and the dynamics of the associated evolutionary representation.

4.7 Conclusion & Outlook

We have shown that the evolutionary approach to solving discrete multi-objective optimization prob-
lems first introduced in [22] converges to a well-defined equilibrium. In addition, we have analyzed
the behavior with respect to larger number of objectives. Even in this limiting case, we have seen
that the formalism allows for a meaningful evolutionary interpretation.

It has become clear that the introduced method represents a versatile way to analyze and solve
multi-objective problems from a wide range of applications. Further investigation is needed into the
comparison with other methods for choosing the feature weights.

In terms of limits to the evolutionary representation, we have seen that the existence of a normaliza-
tion mapping X — @ is required to allow for a meaningful comparison of features in the optimization.
In practice, for many cases of input data X, the choice of normalization is straightforward and does
not appear to limit the evolutionary approach to specific fields of application.

Restricting to a single choice of evolutionary strategies that yield Afom and Agal has been done for
introductory reasons. It is apparent that there exists a wide range of additional ways to govern the
dynamics of genes and organisms - examples in biological systems are altruistic or selfish behavior
of one gene or organism with respect to each other. We leave the analysis of the convergence of
other evolutionary strategies to future work. When multiple evolutionary strategies are allowed
in an optimization, the question arises of how organisms and genes determine which combination
of strategies to adopt. As shown in [22], several definitions of this behavior exist, yet a thorough
mathematical analysis and comparison of these approaches remains to be done.

Targeting a complete data-independent evolutionary method without externally imposed rules, pa-
rameters, or weights, the pre-defined choice of the normalization functions X — @ appears to be a
central limitation. However, many statistical methods exist to choose the normalization according
to the feature distribution of an objective in X. One goal for future improvement would therefore
be to assign the objectives to just two categories, ’gain’ or ’cost’, and to automatically select the
normalization from there.

In conclusion, the introduced evolutionary formalism for multi-objective optimization problems con-
stitutes a promising direction for further theoretical and applied investigation. Evolutionary strate-
gies provide new insight into the underlying mechanisms of general data problems.
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