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Abstract. We attempt a brief survey on the cone duality and on the density
theorems of Arrow-Barankin & Blackwell’s type. Concerning the latter aspect we
show the equivalence of two recent and ostensibly different results. We follow a
unified approach which provides in particular a simple way of surveying these results
and their proofs.
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1 Introduction

In 1953, Arrow, Barankin and Blackwell stated an interesting density
result in multicriteria optimization (see [1]) concerning the approximation of
the Pareto efficient points of a compact convex subset of R™ by points that
are maximizers of some strictly positive functional on this set. This theorem
was extended to cover more general notions of efficiency that are defined via
an abstract cone, see [2], [19] and was subsequently generalized to an infinite
dimensional setting, involving either weakly or norm compact sets.

In this article we endeavour a survey on these density results of Arrow,
Barankin and Blackwell’s type. Our aim is to survey the state of the art and
to set in detail the relations among ostensibly different results. To this end,
we shall adopt a unified approach available nowadays and, in doing so, we
shall slightly improve some norm approximation results concerning weakly
compact subsets of a Banach space. Finally we shall show the equivalence of
a recent result of Gong [16] with a well-known earlier one of Petschke [32].

2 Notation

Throughout this paper, X will always be a Banach space and X* its
(topological) dual. However for most of what follows this is not essential and



2 Aris Daniilidis

one can also consider a more general setting (for instance that of a locally
convex space). In the sequel, we shall focus our interest in the norm and the
weak topology of X, which will be denoted respectively by || - ||-topology and
w-topology.

If e > 0 and z € X, we denote by B.(z) the closed ball centered at
x with radious e. For any z,y € X, we define by [z,y] the closed segment
{tx + (1 —t)y : 0 < t < 1}, while the segments (z,y), (z,y] and [z,y) are
defined analogously. For any subset A C X, we denote by int(A) the norm
interior of the set A, by cl(A) (resp. w — cl(A)) the norm (resp. the weak)
closure of A and by co(A) its convex hull. It is well known that for convex
subsets of X the norm and the weak topological closures coincide (see [7]
e.g.).

Let now K be a nonempty subset of X. A point zg € K is said to belong
to the algebraic interior algint(K) of the set K, if for every y € X, the
intersection of the set K with the line joining xo and y, contains an open
interval around the point zg. It is easily seen that int(K) C algint(K).
Moreover if zo € algint(K), then one has (J,o o A(K — {zo}) = X. If K is
closed and convex, then using Baire’s theorem one can deduce from the latter
relation that intK # () and int(K) = algint(K).

We further recall the definition of a quasi-relative interior point, see [5,
Def. 2.3], or inner point, according to the terminology used in [18].

Definition 1. Let K be a nonempty closed convex subset of X and let z¢ €
K. The point zg is called a quasi-relative interior (or inner) point of the set
K, if the set cl(|Jysq A(K — {20})) is a subspace of X.

We shall keep the simple term ‘inner point’ in order to refer to this notion.
We further denote by innK the set of all inner points of K. The following
proposition (see [5, Prop. 2.16]) reveals an interesting and characteristic prop-
erty of these points. This property was actually used as the definition of inner
points in [18].

Proposition 1. Let K be a nonempty closed convex subset of X. Then zy €
innK if and only if xo is a nonsupport point of K, in the sense that the
following implication is true for every x* € X*:

(25,2 —10) <0,Ve € K = (2", 2 —19) =0,Vz € K (2.1)

It is easy to see that intK C afgintK C innK. If K is closed and convex,
each of the previous inequalities becomes equality whenever the smaller set
is nonempty. We further recall from [18, Prop. 2.1] the following proposition:

Proposition 2. If K is a (nonempty, closed, convex and) separable subset
of X, then innK # 0.

Recently, inner points met important applications in variational inequality
problems, see [18], [9] and [23]. In the following paragraph we shall see that
this concept fits naturally also in the cone duality.



ABB Theorems: A Survey 3

3 Order relations in Banach spaces

A nonempty subset C' of a Banach space X is called a cone, if for every
z € C the whole semiline {Az : A > 0} is contained in C. A cone C is called
pointed, if it does not contain whole lines, or equivalently if 0 is an extreme
point of C'. We recall here that a point xg is said to be an extreme point for
the set A, if 2o € A and ¢ is not contained in any open segment (z,y) lying
in A. In the sequel we shall assume that the cone C' is always closed, convex
and pointed.

It is well known (see for instance [31] or [22]) that the cone C induces a
partial order relation < on X by means of the following formula:

rysy—zel (3.2)

Setting # = 0 in the above formula (3.2) we see that the cone C itself corre-
sponds to the set of nonnegative elements.

Let further A be a nonempty subset of X. The set A inherits naturally
from X the aforementioned order relation <. Consequently one can consider
the set Maxz(A, C) of mazimal (or efficient) points of A (with respect to the
cone () as follows:

Maz(A,C)={zo € A: {zo} =AN(x0+C)} (3.3)
The dual cone C* of C is defined by

C*={feX": f(x) >0,Vz € C} (3.4)

The dual cone C* corresponds to the set of all positive functionals. It is easily
seen that C* is always a nonempty closed convex cone of X™*.
We further denote by

CP={feY": f(x)>0,VreC,x#0} (3.5)

the set of all strictly positive functionals. This set is also a cone; however in
some cases it may be empty (see the example that follows Proposition 3). In
fact one can show (see [5] e.g.) that C* actually coincides with the set of inner
points innC™* of the closed convex set C*, so its nonemptiness is assured if
the space X* is separable (see Proposition 2 above). The importance of the
strictly positive functionals stems from the fact that they are closely related
to the notion of a cone base. The definition of the latter is recalled below:

Definition 2. A closed convex subset V of C' is said to be a (cone) base, if
for every z € C, x # 0, there exist unique A > 0, b € V such that y = Ab.

The existence of a cone base for a given cone C' is in fact equivalent to the
nonemptiness of the set C* = innC*, see also [22]. Indeed, if C* # ), then for
any f € C% the set {x € C': f(z) = 1} defines a cone base on C. Conversely,
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if the cone C has a base V', then separating V' from 0 (by the Hahn-Banach
theorem), one immediately obtains a functional f € C*.

It follows directly from Proposition 2 that if X is a separable Asplund
space (i.e. X* is separable), then every cone has a base. This result can be
refined even further, as shows the following proposition in [5, Th. 2.19].

Proposition 3. Assume that X is a separable Banach space. Then every
(closed, convex pointed) cone C' on X has a base.

The separability assumption is indispensable in the statement of Propo-
sition 3. Indeed, without this assumption nice cones may not have a base, as
shows the following example taken from [18].

Example: Let I be any uncountable set and Y = ¢2(I) be the Hilbert space
of all square integrable (with respect to the counting measure) functions
f I = R. Consider the cone C of all non-negative real valued functions
of Y. One easily sees that C* = C'. However this cone has no inner points,
hence C' has no base.

We further consider the interior intC* of the cone C*, which is a (possibly
empty) convex cone. One obviously has intC* C innC* = C¥, the equality
holding whenever intC* # (). In particular, the latter is equivalent with the
existence of a bounded base for the cone C, as states the following proposition,
see [22].

Proposition 4. Let C be a closed, convez, pointed cone of Y. The following
are equivalent:

(i) The dual cone C* has a non-empty interior intC*.

(i) The cone C' has a bounded base V.

However it is possible to have intC* = ) and innC* # . In fact this
is very often the case. To enlighten further the above situation we present
below some standard examples of Banach spaces possessing a natural ordering
structure.

Examples:

1. Let X = R" = X*, and C = C* = R!. In this case the cone has a
bounded base, defined for instance by the strictly positive linear form y =
(1,1,...,1) € R™

2. Let X = ('(N) be the space of all absolutely summable sequences
and C' = (1 (N) be the corresponding cone of all nonnegative sequences of
(*(N). One can easily see that the dual cone C* (which is the set £>°(N)
of all nonnegative bounded sequences of the dual space X = ¢*°(N)) has
a nonempty interior, which coincides with the set of all positive bounded
sequences. We conclude from Proposition 4 that C has a bounded base.
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3. Let X = (?(N), X* = (9(N) where > + - = 1 and 1 < p,q < +oc.
Consider the cone C' = ¢?(N). It follows from Proposition 2 (or Proposition
3) that the dual cone C* = ¢9(N), has inner points, hence C' has a base.
However since C* has an empty interior, every base of C' is unbounded.

4. Let X be the space co(N) of all null sequences and let C' = co(N)4+
be the cone of all nonnegative null sequences. Then X* = ¢'(N) and C* =
Y(N)y. As in the previous case we conclude that the cone co(N)y has a
base, but not a bounded base.

5. Let X be the space C([0,1]) of the real continuous functions equipped
with the topology of the uniform convergence. Since X is separable, applying
Proposition 3 we conclude that the cone C([0, 1])+ of the nonnegative valued
functions has a base. However in this case X* coincides with the set BV ([0, 1])
of all regural Borel (signed) measures on [0, 1] and C* with the set BV ([0, 1])+
of all regural Borel positive measures. Since the latter set has an empty
interior, we conclude that the cone C'([0,1])+ has no bounded base.

From the previous examples it becomes clear that the existence of a cone
base is a natural assumption in vector optimization, which is always fulfilled if
X is separable. On the other hand this is not the case for the assumption of the
boundedness of the base: Among the classical Banach spaces, this condition
is fulfilled only in ¢(N) (or in general in L' (x)) and in the finite dimensional
spaces. We summarize below our main conclusions from the above discussion:

Proposition 5. Let C be a closed, convex, pointed cone of X. Then
(i) C has a base iff innC* # ()
(i) C has a bounded base iff intC* # 0
(11) If X is separable, then innC* # ()

4 Positive (or proper efficient) points.
Arrow-Barankin-Blackwell Theorem.

In the sequel we shall deal with a closed, convex pointed cone C' with a
base V in a Banach space X. In this case one has C* = innC* # (), hence
for any subset A C X one can define the set of positive points Pos(A,C) of
A as follows:

Pos(A,C) ={xg € A:3f € innC”, f(xg) = sup f(A)} (4.6)

where sup f(A) denotes the supremum of the functional f on the set A.
We mention here that also other (more restrictive) notions of efficiency have
been defined in the literature, as for instance the notion of “superefficiency”
introduced in [6], see also [17] for a survey.
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It is straightforward from relations (3.3), (4.6) and the definition of C*
(relation (3.5)) that Pos(A,C) C Maxz(A, C). However simple examples even
in two-dimensionsal spaces certify that in general this inclusion is strict.

In the special case X = R™ and C' = R relations (3.3) and (4.6) have a
certain interpretation in Economics in terms of the Pareto efficient commod-
ity bundles and the supporting system of prices. This has motivated Arrow,
Barankin and Blackwell in 1953 to show the following density result [1] (see
also [30] for an alternative approach).

Theorem 1. Let A be a compact conver subset of R™ and C = R'l. Then
Pos(A,C) is dense in Mazx(A,C).

In [19] and independently in [2] the preceding theorem has been extended
to cover the case of more general cones C' in R™. Theorem 1 was also gen-
eralized to an infinite dimensional setting. The particular case of £>°(N) has
a certain significance in Economics involving models with an infinite horizon
production, and has been studied in [33], [27], [29] and [12]. However the
statement of Theorem 1 itself as a density result had an independent inter-
est and generated pure mathematical extensions to arbitrary Banach spaces.
Many authors have worked in this direction, see for instance [34], [4], [21],
[10] etc.

In infinite dimensions there are two topologies that enter naturally into
consideration, the weak and the norm topology. The result that follows was
originally proved in [15]. Nowadays an easy and direct proof of it is available,
that uses the technique of ‘dilating cones’ (see [20]). This technique is now
classical and has already been repeated several times in density results of this
kind in [35], [16], [28] and [13]; see also [14] for a more general approach in
a locally convex setting. However we give here a sketch of this proof, since it
will help the presentation of the forthcoming density results.

In the following statement one can consider & to be either the norm or
the weak topology of X.

Theorem 2. Let X be a Banach space, X* its dual and S any topology of
the dual system (X, X*). Let A be a S-compact, convex subset of X and C a
closed, convez, pointed cone with a base V. Then
Maz(A,C) C Pos(4,C) (4.7)

Proof. (Sketch) Let 2o € Maxz(A,C), i.e. {0} = AN (zo + C).
We first observe that C' = cone(V'), where cone(V') denotes the closed cone
generating by V. Moreover, it is no loss of generality to assume that the
distance d(0,V) of the cone base V' from 0, is greater than 1/2.

Step 1: For every n > 2, consider the (closed, convex, pointed, based)
cone Cp, =cone(V + B1(0)). Then we obviously have C' = (7,5, Ch.
Note that in general zg does not remain a maximal point of A for the larger
cone C',.
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Step 2: For each n > 2, choose a maximal (with respect to C),) point
T, € Maz(A,Cy), such that z, € A, := (o + C,) N A. This is always
possible (see for instance [26, Cor. 3.6]), since the set A, is $-compact. Since
the relation C' = (1,,», C» implies that {z¢} = (1,,5, A, we easily conclude

that z,, — z in the S-topology.

Step 3: Since {x,} = AN (z, + C,) and the cone C),, has a nonempty
interior, there exists a functional z* € C} that supports the set A at the
point z,. The proof now finishes by the observation that z* is actually a
strictly positive functional for the original cone C. O

A careful investigation of the previous proof leads easily to the forthcom-
ing corollary. We will first need the following definition.

Definition 3. We say that xo € A is a point of continuity of the set A, if
the identity mapping id : (A,w) — (4, ]|||) is continuous at xg.

The proof of the following corollary is straighforward. However this result
will be useful in the sequel. Let us recall from the proof of Theorem 2 that
for n > 2, C,, :=cone(V + B1(0)) and A,, := (z0 + C,) N A.

Corollary 1. Let A be a w-compact, convexr subset of X. Assume that xo €
Maz(A,C) and that for some ng > 2, xo is a point of continuity of the set

Ap,. Then zg € Pos(A,C)”.”.

Proof. Repeating the proof of Theorem 2 we produce a sequence (x,), C
Pos(A,C) that is weakly converging to xo. We note that this sequence is
eventually contained in A, , hence in view of Definition 3, it is actually norm
converging to xg. O

Theorem 2 expresses simultaneously two different density results, one for
the norm and one for the weak topology. However in the first case, the norm
compactness assumption imposed on the convex set A is very restrictive in
infinite dimensions. On the other hand the approximation result that we
obtain in the second case is rather weak. It is desirable to obtain a strong
approximation result involving weakly compact subsets of X, as for example
does (in a local way) Corollary 1. To this end, Jahn [21] was the first to
derive a norm approximation result for weakly compact subsets, by assuming
that the cone C' was of a ‘Bishop-Phelps type’. Subsequently Petschke [32]
(see also [15] for a different approach) refined Jahn’s proof to conclude the
same result, using - more general - any cone having a bounded base. We state
below Petsche’s result [32].

Theorem 3. Let A be a w-compact convex subset of X and assume that C
has a bounded base. Then

Maz(A,C) C Pos(A,C) (4.8)
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However, as we have already discussed in the previous section, the as-
sumption of a bounded based cone is unpleasant. Recently Gong [16] tried
to deal with this inconvenience by relaxing this assumption to an apparently
weaker one. Before we proceed to this result, we shall need the following
definition.

Definition 4. Let A be a closed convex subset of X and zg € A.

(i) o is called a denting point of A, if for every € > 0, we have xo ¢ ¢o(A \
B.(x0)), where ¢6(A \ B:(x)) denotes the closed convex hull of the set (A4
B.(x0)).

(ii) xo is called a strongly exposed point of A by the functional z* € X*, if for
every sequence (Z,), C A, the relation z*(z,) — x*(zo) implies the norm
convergence of the sequence (zy,), to xg.

Tt follows easily from Definitions 3 and 4 that every denting point of A is a
point of continuity for this set. Moreover every strongly exposed point of A is
denting. It is worthmentioning that these last two notions coincide if A = C
and zy = 0, since in that case they are both equivalent to the boundedness
of the cone base. This is the content of the following proposition in [22] (see
also [16] for the equivalence of (ii) and (iii)).

Proposition 6. The following statements are equivalent:
(i) 0 is a strongly exposed point of the cone C.
(i) 0 is a denting point of C.
(i5i) C has a bounded base

We are now ready to state Gong’s density result, see [16].

Theorem 4. Let A be a w-compact convex subset of X. Assume that one of
the following two conditions is fulfilled.

(i) Every mazimal point of A is denting.

(1) 0 is a point of continuity of the cone C, i.e.

Ve>0, 0¢C\B(0,e) (4.9)
Then the following approximation result holds:

Mazx(A,C) C Pos(A,C) (4.10)

Condition (i) of Theorem 4 is satisfied if for example A is taken to be the
unit ball of 7, for 1 < p < 400, see [16]. In the next section we shall see that
this condition can be remplaced by a weaker one that would only require that
every maximal point of A is a point of continuity. However even this latter
condition remains undesirable, since it imposes an a priori assumption on the
set of maximal points of A.

On the other hand, in view of Proposition 6 and of Definition 4(i) and its
subsequent comments, it follows that condition (4.9) holds trivially whenever
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the cone C' has a bounded base. In that sense the result of Theorem 4(ii)
appears to be more general than the one in Theorem 3. In [16], the author
queries (and states it as an open question) whether Theorem 4(ii) is indeed
a real extension of Theorem 3. In next section we shall answer this question
to the negative, by means of a characterization of the denting points of the
closed convex subsets of a Banach space.

5 Equivalence of Petscke’s and Gong’s theorems.

In this section we show that if 0 is a point of continuity of a pointed
cone C, then it is also a denting point of C'. Consequently, it will follow that
Theorems 3 and 4(ii) are equivalent.

Let K be a closed convex subset of X and zy € K. As already partially
seen in the previous section, every denting point is both an extreme and a
point of continuity of K. In [24] (see also [25]) it has been proved that these
two properties actually characterize denting points, in case of a closed convex
and bounded subset K. The following proposition extends this result to the
class of all closed convex subsets of X.

Proposition 7. Let xy be a point of a closed convex subset K of a Banach
space. Then xq is denting if and only if Ty is an extreme point and a point
of continuity.

Proof. Let us assume that z( is both an extreme and a point of continuity of
the set K. Take any R > 0 and consider the set K = { € K : ||z—x¢|| < R}.
Since Kr C K and x9 € Kg, it follows easily that zy remains an extreme
point and a point of continuity for the set Kg. Since the latter set is bounded,
it follows from [25] that z¢ is a denting point of it. The following claim finishes
the proof.

Claim: xo remains a denting point for the set K.

[Indeed, take any e > 0. With no loss of generality we can assume that R > «.
Since z is a denting point of the set Kr, we have zo ¢ ¢o(Kgr \ B:(z0)),
hence there exist 2* € X* and a € R such that z*(z9) < a < z*(2'),
Vz' € ¢o(Kg \ B:(%)). Set W = {z € X : 2*(x) < a} and observe that
since W is a half-space and K is convex, we have WNK C B.(xzo)NK. Note
now that W N K is a neighborhood of o for the (relative) weak topology
of K. It now follows that ¢o(K \ B:(x9)) € K \ W, hence in particular
zg ¢ ¢o(K \ B:(zo)). The claim is proved.] O

Remark: It is interesting to observe that the previous result has the following
interesting restatement:

Ve > 0,2 ¢ ¢o (K\B(z,e)) & Ve > 0,z ¢ co(K\B(z,¢)) and = ¢ K\B(w,s)w

i.e. the convex and the weak topological hull of the set (K'\B(z,e)) can be
considered separately.
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In the special case of a closed, convex pointed cone C, since the point
xo = 0 is extreme, we infer the following corollary.

Corollary 2. Let C be a closed convex pointed cone of X. The following
statements are equivalent:

(i) 0 is a denting point of C

(i) 0 is a point of continuity of C

The above corollary together with Proposition 6 shows in particular that
Petschke’s result (Theorem 3) and Gong’s result (Theorem 4(ii)) are equiv-
alent. Consequently, it remains widely open whether we can efficiently relax
(or omit) the assumption of a bounded cone in Theorem 3, without giving
up the norm approximation result theorem.

In the following theorem we survey the statements of Proposition 4, of
Proposition 6 and of the previous corollary in the following theorem, see also
[8]. The equivalence of (ii) and (iv) has also been observed in [16].

Theorem 5. Let C' be a closed convexr pointed cone of Y. The following
statements are equivalent:

(i) 0 is a strongly exposed point of C

(ii) 0 is a denting point of C

(iii) 0 is a point of continuity of C

(iv) & >0, 0¢ co(C\B(0,¢))

(v) C has a bounded base

(vi) intC* #

The following proposition is a local density result which extends in partic-
ular Theorem 4(i). The essence of this result comes actually from Corollary
1. We recall that a norm is said to have the Kadec-Klee property ([11] eg.),
if the relative norm and the relative weak topologies on the unit ball Bx
coincide at any point of the unit sphere Sx := {z € X : ||z|| = 1}. We also
recall that every reflexive Banach space admits a Kadec-Klee renorming.

Proposition 8. Let A be a w-compact convex subset of X and g € Max(A,C).
Consider the following conditions:

(1) xo is a point of continuity of the set A.

(11) 0 is a point of continuity of the cone C

(11i) There exists y € X, such that for some ng > 2, xo is the farthest point of

y for the set Ap, := (xo+Chry)NA, (i.e. |ly—zol| > |lly—2z||, for all z € A, ),
with respect to an equivalent norm ||-|| of X having the Kadec-Klee property.
(iv) For some ng > 2, xo is a point of continuity of the set Ay, .

If any of the conditions (i)-(iv) holds, we have

xo € Po,s:(A,C')H'H
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Proof. In virtue of the Corollary 1, it suffices to show that each of the con-
ditions (i)-(iil) implies condition (iv).

Since A,, C A, it follows directly that condition (i) implies (iv).

Let us now assume that (ii) holds. Then from Theorem 5 it follows that C
has a bounded base V. Following the construction of the proof of Theorem
2, we observe that the cones C,, also have a bounded base, hence applying
again Theorem 5 we conclude that (iv) holds.

Let us finally assume that (iii) holds. Then zy is a boundary point of the
closed ball B,(y) centered at y with radius r = ||y — zo||. Since the norm || - ||
has the Kadec-Klee property, it follows that zq is a point of continuity of the
set B,(y). Since A,, C B,(y) it follows that (iv) holds. O

Remark: Since condition (ii) is equivalent to the existence of a bounded base
(see Theorem 5), the above proposition gives in particular an alternative (and
simpler) way to prove Theorem 3 of Petschke.
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