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II. Synthése de ’activité scientifique

Introduction : Ce document de synthese s’articule autour de l'analyse convexe, de l'analyse quasi-
convexe et des applications en optimisation. Dans le premier domaine on aborde les themes de la
continuité, de la différentiabilité et des critéres de coincidence pour les fonctions convexes, puis la con-
vexification des fonctions semi-continues inférieurement. Pour ’étude des fonctions quasi-convexes deux
approches sont adoptées: une approche analytique, via un sous-différentiel généralisé, et une approche
géométrique, basée sur les normales aux tranches. La derniere partie est consacrée a des applications &
Iintégration d’opérateurs multivoques, aux inéquations variationnelles et & des problemes d’optimisation
multi-criteres en dimension finie et infinie. Parmi les nouveautés de ce travail, on trouve la notion
de monotonie fortement cyclique, qui caractérise le sous-différentiel d’une fonction convexe dont la re-
striction a son domaine est continue, la quasi-monotonie cyclique, qui est une propriété intrinseque du
sous-différentiel d’une fonction quasi-convexe, et la notion de quasi-monotonie propre, qui caractérise
les opérateurs pour lesquels I'inéquation variationnelle associée a toujours des solutions sur toute sous-
partie convexe et faiblement compacte de leur domaine. Notons encore une nouvelle caractérisation de la
propriété de Radon-Nikodym, et une extension a la dimension infinie d’un résultat de Janin concernant
I'intégration d’un opérateur maximal cycliquement sous-monotone, résultat qui généralise le théoreme
classique de Rockafellar pour les opérateurs maximaux cycliquement monotones.

Analyse convexe

Le théme principal de cette section est I’étude des propriétés des fonctions convexes. Les travaux
effectués dans ce domaine se décomposent en quatre parties:

- une étude de classification des propriétés de continuité des fonctions convexes s.c.i.,

- une nouvelle caractérisation de la propriété de Radon-Nikodym en relation avec la différentiabilité au
sens de Gateaux,

- une étude de criteres de coincidence de deux fonctions convexes s.c.i.,

- une étude sur la convexification des fonctions s.c.i. basée sur le sous-différentiel de Fenchel-Moreau.

Continuité des fonctions convexes

Dans certains probléemes d’optimisation on doit souvent considérer des fonctions qui prennent leurs
valeurs dans I'espace R= R U {+00}. On consideére dans la suite que R est muni de la topologie étendue
de R, i.e. la topologie engendrée par les ouverts habituels de R et les parties de la forme (a,+oo], ol
a R

Soit X un espace de Banach et f : X — RU{+4o00} une fonction convexe, semi-continue inférieurement
(s.c.i.). Notons domf 'ensemble {z € X : f(z) < +o0}. Il est bien connu ([50, page 37]) que

f est continue en x si et seulement si x € intdom f. (1)
On peut également ajouter a cette équivalence I’assertion suivante:
Of est localement borné (2)

[Rappelons ici ([52] e.g.) que pour tout = € domf, le sous-différentiel au sens de Fenchel-Moreau Jf est
défini par:

Of(x) ={z" € X" : f(y) = f(z) + (2", y — x),Vy € X} ] 3)



Il suit de (1) que f est discontinue en = € domf, si et seulement si € domf\intdom f. En particulier,
f est discontinue en tout point, lorsque intdomf = ().

Citons trois exemples - typiques de notre étude - ou cela est le cas:
e f est la fonction indicatrice d’une partie convexe, fermée et d’intérieur vide.

e f est le résultat d’un prolongement (en ajoutant la valeur +00) d’une fonction g convexe continue
& un plus grand espace sur lequel intdomg = () (ceci est une opération standard en optimisation).

e f est la norme | - ||; sur I'espace de Hilbert ¢?(N).

Dans les deux premiers exemples, on note que la discontinuité de la fonction f n’est pas un défaut
intrinseque, mais elle est due a la valeur 400 que 'on a imposée en dehors de son domaine. Par contre,
dans le troisieme exemple, la discontinuité a des raisons bien plus profondes: on remarque aisément qu’au
voisinage de chaque point z € domf la fonction a des valeurs a la fois finies et arbitrairement grandes.
Comment alors distinguer ces deux différents types de discontinuité ?

Commencons par une simple remarque: la restriction f |qom s de la fonction f & son domaine ne
prend que des valeurs réelles. Dans les deux premiers exemples cette restriction est continue, alors que
dans le troisieme elle est discontinue en tout point. Pour répondre donc & la question ci-dessus, il suffit
de trouver un moyen de concrétiser cette information.

Dans cette partie, on propose une réponse complete basée sur une approche duale. Avant de donner
les détails, rappelons d’abord une propriété liée au sous-différentiel, la monotonie cyclique ([53]):

Un opérateur T': X = X* est dit cycliquement monotone, si pour tout n € N\{0}, tous xq, z1,... ,2Zn
dans X et tous xf € T'(zo), 27 € T(x1) ...z} € T(zy,) on a:

n

> (@f,wien — @) 0. (4)

1=0

(Ofl Tp+1 = l‘o).

Cette propriété fondamentale caractérise, parmi les opérateurs monotones, ceux qui sont inclus dans
le sous-différentiel d’une fonction convexe s.c.i. Dans [22], on introduit une variante de la monotonie
cyclique, appelée “monotonie o—-cyclique”, ou les sommes finies sont remplacées par des sommes de
séries :

Un opérateur T': X = X* est dit o-cycliquement monotone en zg, si pour toute suite {z, Zﬁ% de X

satisfaisant lim z, = x¢ et pour tous a} € T'(z;) (i =0,1,2,...) on a:
n—oo

thUPZ (x7,2ip1 —2) <0 (5)

n—-+oo i—0

On peut montrer que (5) est vérifié pour tout opérateur monotone dans R ainsi que pour tout sous-
différentiel localement borné, ce qui n’est évidemment pas le cas du sous-différentiel d’une fonction ayant
des discontinuités. En effet, dans [10], on montre que la monotonie o-cyclique en z( caractérise le sous-
différentiel d’une fonction convexe, s.c.i., dont la restriction & son domaine de sous-différentiabilité est
continue en xg.

Une propriété plus restrictive, adaptée a la continuité de la restriction au domaine, est aussi introduite :
Un opérateur T : X == X* est dit fortement cycliquement monotone en x, si pour tout £ > 0 il

existe § > 0 tel que pour tout x; € domT N B(xo,d), pour toute suite {z;}; % de dom T satisfaisant
lim x; = g, et pour toute suite {x]};>1 de X* satisfaisant =} € T'(z;) pour tout ¢ > 1, on a:

71— +00

lim sup Z (T}, Tig1 — ) < e (6)

notee iy



Le schéma suivant résume les résultats de notre étude (f désigne une fonction convexe s.c.i. et 9f
son sous-différentiel, et 'on dit qu'un opérateur T est localement borné sur une partie D si tout point de
D a un voisinage sur lequel T" est borné):

Jf localement borné sur domf <= f continue
U U

Of fort. cycliquement monotone <= flqom s continue
4 I

Of o-cycliquement monotone <= fldom oy continue

Notons que toute implication non affichée ci-dessus est en général fausse.

Différentiabilité des fonctions convexes et propriété de Radon-Nikodym

On dit qu'un espace de Banach X est de Radon-Nikodym, si toute mesure vectorielle m : B — X de
variation bornée et absolument continue par rapport a la mesure de Lebesgue A, peut étre représentée
comme une intégrale (au sens de Bochner) d’'une fonction g := [42] € L1([0,1], X); (B désigne la tribu
borélienne de [0, 1]). D’apres les travaux classiques de Rieffel, Phelps, Stegall et d’autres (voir [50, Chap. 5]
e.g.) cette propriété sur un espace dual se trouve étroitement liée a la différentiabilité au sens de Fréchet
des fonctions convexes continues sur le prédual. Plus précisément on a:

X est un espace d’Asplund <= X™ est un espace de Radon-Nikodym (7)

[Rappelons que X est un espace d’Asplund, si toute fonction convexe continue sur un ouvert de X est
Fréchet différentiable sur une partie Gs-dense de son domaine.]

Réciproquement, la caractérisation des espaces de Radon-Nikodym par la Fréchet-différentiabilité
générique des fonctions w*-s.c.i. convexes continues sur le dual, a été montrée par J. Collier dans [17]:

X est de Radon-Nikodym <= X est préfaiblement Asplund. (8)

Ici le terme “préfaiblement Asplund” signifie que toute fonction w*-s.c.i. convexe continue sur X* est
Fréchet-différentiable dans une partie G5 dense de son domaine.

Dans [7], on donne une nouvelle caractérisation des espaces de Radon-Nikodym :

X est de Radon-Nikodym si et seulement si toute fonction w*-s.c.i. convexe continue sur I’espace dual
X* est Gateaux-différentiable en un certain point, sa Gateaux-dérivée étant dans le prédual X.

Puisque les Fréchet-dérivées des fonctions w*-s.c.i. sont toujours dans le prédual ([3, Proposition 2.1]),
I'intérét du résultat montré est de remplacer “Fréchet” par “Gateaux” et de passer de la différentiabilité
générique a la différentiabilité en un point. D’autre part, si I’espace X n’est pas de Radon-Nikodym, alors
il peut étre possible d’avoir une fonction w*-s.c.i. convexe continue sur X* qui est nulle part Fréchet-
différentiable, mais qui a des points de Gateaux-différentiabilité et des Gateaux dérivées dans le prédual
X. En effet, on construit une fonction f w*-s.c.i. convexe continue sur co(N)* = ¢!(N), nulle part Fréchet
différentiable mais Gateaux-différentiable en tout point d’un ensemble dense dans ¢1(N), avec dérivées
dans le prédual ¢o(N).

Criteres de coincidence de fonctions convexes
Dans ce paragraphe, on s’intéresse aux questions suivantes :

e Une fonction convexe s.c.i. est-elle déterminée d’une maniére unique a partir de ses valeurs sur une
partie dense ?

e Si f est une fonction s.c.i., si domf est une partie convexe et si df est non-vide sur une partie dense
de domf, peut-t-on conclure que f est convexe ?



Concernant la premiére conjecture, on montre dans [12] qu’en dimension infinie la réponse est négative.
En particulier, il est méme possible d’avoir deux fonctions distinctes fi et fy convexes, s.c.i., et posi-
tivement homogenes, qui prennent les mémes valeurs sur une partie dense de X et qui satisfont f; < fo
en tout point (notons ici que ce méme exemple montre que la réponse & la deuxieme question est aussi
négative).

On étudie ensuite la classe G1(X) des fonctions convexes s.c.i. ¢ pour lesquelles il n’existe aucune
fonction majorante (différente de g) s.c.i. qui coincide avec g sur une partie dense de domg. On obtient
alors le résultat suivant :

Pour toute fonction convexe s.c.i. g, de domaine dense dans X, on a
g € G1(X) <= domyg = X.

A partir de la deuxiéme conjecture, une question bien plus pertinente se pose: si g est une fonction
convexe et s.c.i. et si f est une fonction s.c.i. telle que f** = g et que dom(0f) est dense dans domg,
est-il vrai que f =¢7?

Pour aborder cette question, notons Go(X) la classe des fonctions g pour lesquelles la conclusion ci-
dessus est vraie. Il s’ensuit que Go(X) contient strictement la classe G1(X). Pour cette nouvelle classe
on obtient alors le résultat suivant:

Pour toute fonction convexe s.c.i. et positivement homogene g avec domg dense dans X, on a:

g € G2(X) <= domyg = X.

Etude de la convexification d’une fonction s.c.i.

Il est bien connu ([53], [55] e.g.) qu’une fonction s.c.i. est convexe si (et seulement si) son sous-
différentiel de Fenchel-Moreau est un opérateur maximal cycliquement monotone. (Il est clair que
I’hypothese de maximalité est essentielle, puisque le sous-différentiel au sens de Fenchel-Moreau d’une
fonction quelconque est toujours cycliquement monotone.)

Dans [8], on démontre qu’en dimension finie, si ’hypotheése de maximalité du sous-différentiel est
remplacée par le fait que ses valeurs sont non vides sur un ensemble dense de I’espace, on peut toujours
conclure que la fonction est convexe (et partout définie). Notons que ce résultat n’est plus vrai en
dimension infinie (voir aussi le paragraphe précédent), sauf si le sous-différentiel posseéde une sélection
localement bornée dans son domaine.

On s’intéresse ensuite au résultat classique de Rockafellar ([53]) qui affirme que tout opérateur maximal
cycliquement monotone est en fait le sous-différentiel d’une fonction convexe s.c.i. (unique & une constante
pres). Pour ce faire, Rockafellar a introduit un processus d’intégration pour les opérateurs multivoques
cycliquement monotones. Rappelons ici ce processus:

Etant donné T : X = X* et z € domT, la fonction fr définie ci-dessous est propre (lorsque 'opérateur
est cycliquement monotone) convexe s.c.i. et elle satisfait T'(x) C df(x) pour tout z € X :

fr(x) :=sup {Z(mf7mi+1 —x;) + (z),x— xn>} 9)

=0

ou le supremum est pris sur tout n > 1, tous z1,x2,...,x, dans domT et tous zf € T(xg),z} €
T(x1),...,x5 € T(zp).

Rappelons maintenant que le sous-différentiel df (au sens de Fenchel et Moreau) d’une fonction f s.c.i.
(non nécessairement convexe) est toujours un opérateur cycliquement monotone (mais éventuellement &
valeurs vides partout). Cependant, dans le cas ou la fonction f (ou une perturbation linéaire d’icelle) a
un minimiseur global, la partie dom(df) n’est pas vide et on peut alors considérer la fonction convexe
s.c.i. f = foy, définie par (9) pour T = Jf. Il s’ensuit que f est un minorant de f, donc elle minore I’
enveloppe convexe s.c.i. f** de f ([36, page 218] e.g.).



Une question naturelle alors se pose:
Quand les fonctions f et f** sont-elles égales?

Le résultat classique de Rockafellar ([53]) affirme que cela est le cas, si la fonction f est elle-méme convexe
et s.c.i. car on aura alors f = f = f**. D’autre part, un exemple relativement simple dans R?2 (voir [11])
montre qu'une telle conclusion — bien que toujours vraie en dimension 1 — est en général fausse si f n’est
pas convexe.

Dans [8], on démontre que f = f**, pourvu que f soit I-coercive (ou super-coercive, selon certains
auteurs), i.e.

1@ _ L (10)

| —oo ||z]]

Ce résultat a été généralisée dans [11] pour la classe des fonctions epi-pointées, i.e. des fonctions
satisfaisant intdom f* # @), ot f* désigne la conjuguée de f.

Analyse quasi-convexe

Le theme de recherche dans cette section est ’analyse quasi-convexe, c’est-a-dire la convexité et la
monotonie généralisées et leurs applications en optimisation. Dans cette partie on trouve:
- une étude dans le cadre de ’analyse non-lisse, c’est-a-dire faisant appel a des notions de sous-différentiel
généralisé,

- une étude géométrique, avec la notion de “normales aux tranches”.

Approche analytique: sous-différentiel généralisé

La convexité généralisée est étroitement liée a I’économie mathématique. La quasi-convexité, souvent
méme stricte ou semi-stricte, est une hypothese standard sur ('opposé de) la fonction d’utilité dans les
modeles micro-économiques. Cette propriété décrit plus ou moins correctement le comportement des
consommateurs (voir [1] e.g.). Rappelons ici qu'une fonction f : X — R U {+oc0} est dite quasi-convexe,
si pour tout A € R, la partie Sf(X\) := {z € X : f(z) < A} est convexe.

Une autre notion importante en économie mathématique est la fonction de demande, qui correspond a
la dérivée f’ (si elle existe) de la fonction d’utilité f. L’opposée g d’une telle fonction est quasi-monotone
([1] e.g.), i.e. elle satisfait la relation suivante, pour tous z1,22 € X :

(9(z1), 22 — 21) > 0= (g(22), 22 — 71) > 0. (11)

Notons tout d’abord que cette notion peut étre étendue d’une maniére naturelle aux applications (i.e.
opérateurs) multivoques 7' : X = X* de la fagon suivante ([42]) : pour tous z1,x2 € X et tous z} € T'(z1),
x5 € T(z2):

(x], 22 — 1) > 0= (25,22 — 1) > 0. (12)

(Dans [31] une autre maniere de définir la quasi-monotonie avait été introduite pour la classe des
opérateurs multivoques qui proviennent d’un sous-différentiel. L’équivalence de ces deux définitions a
été établie dans [48].)

Une notion plus restrictive est la pseudo-monotonie (au sens de Karamardian [39]) : pour tous z1,x2 €
X et tous z7 € T(x1), x5 € T(x2):

(x], 22 —x1) > 0= (25,22 — x1) > 0. (13)



Cette derniere notion a été utilisée dans des problemes de complémentarité, d’équilibre ou d’inéquations
variationnelles ([39], [54], [35] e.g.).

Dans les années 80-90, avec les développements de ’analyse non-lisse, plusieurs notions de sous-
différentiel généralisé ont été proposées pour pallier ’absence de différentiabilité dans le cas des fonctions
non régulieres (c’est-a-dire, non différentiables, voire méme non continues). Ensuite, et pendant quelques
années, plusieurs auteurs ([42], [48], [47], [45] e.g.) se sont intéressés & établir une correspondance entre
la convexité généralisée et la monotonie généralisée dans ce cadre non-lisse. Il a été alors établi que, si f
est une fonction s.c.i. et 0* f un sous-différentiel abstrait satisfaisant le théoréeme de la valeur moyenne
approchée ([4], [46] e.g.), alors:

f est quasi-convexe <= 0" f est quasi-monotone. (14)
Si 'on suppose aussi que f est continue, alors:
f est pseudo-convexe <= 0" f est pseudo-monotone. (15)

Les deux principaux piliers de ’analyse quasi-convexe, la convexité généralisée et la monotonie généralisée,
apres avoir suivi un développement indépendant, se sont trouvés désormais étroitement liés par I’analyse
non lisse.

(i) Caractérisation de la stricte (resp. semi-stricte) quasi-convexité

L’objectif de ce paragraphe est d’élargir la correspondance non lisse mentionnée ci-dessus et de car-
actériser aussi des sous-classes de fonctions quasi-convexes: concretement, dans [25], on caractérise les
fonctions localement lipschitziennes f qui sont semi-strictement (resp. strictement) quasi-convexes par
la semi-stricte (resp. stricte) quasi-monotonie de leur sous-différentiel de Clarke 9°f ([16]). On obtient
alors le diagramme suivant :

f strict. quasi-convexe — 0° f strict. quasi-monotone
I 3
f semi-strict. quasi-convexe <= 0°f semi-strict. quasi-monotone
4 )
f quasi-convexe — 0°f quasi-monotone

Apres la publication de article [25], on s’est apergu que la définition de la semi-stricte (resp. stricte)
quasi-monotonie d’un opérateur multivoque avait antérieurement été introduite par D.T. Luc dans [43].
Dans le méme travail on trouve d’ailleurs certaines des implications mentionnées ci-haut, ainsi qu’une
caractérisation de la semi-stricte (resp. stricte) quasi-convexité dans le cas de dimension 1. Bien attendu
cette référence aurait figurée dans [25] si on en avait eu connaissance.

(i) Dualité entre convexité et monotonie généralisées et notion de cyclicité

Les équivalences exprimées en (14) et (15) tirent leurs racines du résultat classique suivant ([18]):
si f est une fonction s.c.i. et 0*f est un sous-différentiel abstrait qui satisfait le théoreme de la valeur
moyenne approchée, alors:

f est convexe <= 9" f est monotone. (16)

Il s’ensuit que 9* f sera égal a df, le sous-différentiel de Fenchel-Moreau de ’analyse convexe. De ce fait,
on peut également ajouter & (16) une assertion équivalente :

0™ f est cycliquement monotone. (17)
Une question naturelle alors se pose:

Existe-il une notion analogue en convexité généralisée 7



L’objectif des travaux [26] et [28] est d’introduire des notions de quasi-monotonie (respectivement,
pseudo-monotonie) cyclique et d’établir qu’elles sont vérifiées par tout sous-différentiel 9* f d’une fonction
f s.ci. et quasi-convexe (respectivement, continue et pseudo-convexe).

Présentons alors ces définitions (voir (4) pour la définition d’un opérateur cycliquement monotone).

e Un opérateur T : X = X* est dit cycliquement quasi-monotone, si pour tout n > 1 et tous
X1,Ta,..., oy € X, il existe i € {1,2,... ,n} tel que:

(@f, 21 — x;) <0,Vz] € T(x;) (18)

(ol Zppp1 1= 27).

e Un opérateur T' : X == X* est dit cycliquement pseudo-monotone, si pour tout n > 1, tous
r1,%2,...,%n € X et tous xf € T (), 1 =1,2,... ,non a:

Vie{l,2,...,n—1}, (zf, 2,01 — ;) > 0= (x), 21 — x,) <O0. (19)

A partir de ces définitions, il est facile a vérifier les implications suivantes :

monotonie cyclique == monotonie
4 I
pseudo-monotonie cyclique = pseudo-monotonie
I I

quasi-monotonie cyclique = quasi-monotonie

Ensuite, on renforce les caractérisations (14) et (15) comme suit :
e pour toute fonction s.c.i.

f est quasi-convexe <= 9" f est cycliquement quasi-monotone

e pour toute fonction continue:

f est pseudo-convexe <= 0" f est cycliquement pseudo-monotone.

Cependant, il faut souligner que la cyclicité est une propriété étroitement liée aux sous-différentiels :
la monotonie seule (et méme la forte monotonie), n’entraine pas forcément la quasi-monotonie cyclique.

La quasi-monotonie et la pseudo-monotonie cycliques sont des notions qui apparaissent également en
économie mathématique. En particulier, pour une fonction de demande, la quasi-monotonie cyclique est
un prérequis pour la construction de la fonction d’utilité.

(#ii) Sous-différentiel adapté o l’analyse quasi-conveze
Rappelons d’abord certaines propriétés du sous-différentiel de Fenchel-Moreau (le sous-différentiel de
Panalyse convexe) :

e Pour toute fonction f, df est cycliquement monotone.
e Si f est continue et domf est convexe, alors:

f est convexe <= dom(9f) est dense dans domf.

e Si f est convexe, alors pour tout sous-différentiel abstrait 9* satisfaisant le théoréme de la valeur
moyenne approchée, on a

o f = 0f. (20)



Quel serait alors I'analogue en analyse quasi-convexe ?

Dans [29], on a proposé la notion suivante: a partir d’un sous-différentiel abstrait 0* (par exemple,
Dini, Clarke-Rockafellar etc) on définit le sous-différentiel “quasi-convexe” 99f : X = X* d’une fonction
s.ci. fen z € domf comme suit:

[ OF@ON @), s NF (@) £ {0)
0 f(“””)—{ 0, s N5 () = {0}, 21
Ny (x) ={z" € X*: (z",y —x) <0,Vy € S¢ (f(x))} (22)
et
N7 (z) ={z" € X" : (a",y —x) <0,Vy € S} (f(x))}. (23)

Ici Sy (f(x)) (vesp. S} (f(x))) désigne le sous-niveau (resp. sous-niveau strict) de la fonction f.
On montre ensuite que 07 possede simultanément les trois propriétés recherchées :

e Pour toute fonction f, 97f est cycliquement quasi-monotone.
e Si f est continue et domf est convexe, alors:

f est quasi-convexe <= dom(9?f) est dense dans domf.

e Si f est convexe, alors
01f = 0f.

On établit ensuite des reégles de calcul adaptées a ’analyse quasi-convexe.

Approche géométrique : la normale aux tranches

La notion de cdne normal aux tranches de la fonction (voir (22)) a été utilisée a plusieurs reprises
dans I’étude des conditions d’optimalité des fonctions quasi-convexes, et s’est révélée tres fructueuse dans
les problémes de minimisation de fonctions quasi-convexes ([13], [20] e.g.).

Cependant, on peut facilement voir que, indifféremment de la fonction choisie, I'opérateur Ny est
toujours cycliquement quasi-monotone et par conséquent, il ne peut pas servir pour une caractérisation
des fonctions quasi-convexes — role toujours considéré comme important pour un sous-différentiel.

Dans [5], on propose une variante Ny de la notion initiale, que I’on appelle “la normale aux tranches” et
qui remédie a cet inconvénient. En effet, les résultats obtenus dans [5] et [6] montrent qu’une classification
est alors possible, et que de plus, en adoptant cette démarche on peut obtenir des résultats bien plus
pertinents. (On peut - & posteriori - justifier cela en évoquant le caractére géométrique de la normale,
qui exploite directement la convexité des tranches d’une fonction quasi-convexe).

La notion de normale proposée consiste a considérer d’abord le cone tangent de la tranche, et de
prendre ensuite le cone normal (i.e. le cone polaire) du cone tangent. Cela n’entraine aucune modification
sur Ny, si f est une fonction quasi-convexe, ce qui signifie en particulier que tout résultat établi dans
les travaux cités reste valable. D’autre part, la nouvelle notion s’avere efficace pour filtrer la convexité
généralisée. Elle permet, en fait, une caractérisation géométrique des principales classes de fonctions
quasi-convexes continues en terme de monotonie généralisée :

f str. quasi-convexe <~ N ¢ str. quasi-monotone
! U
[ semi-str. quasi-convexe <= N} semi-str. quasi-monotone
I 4
f quasi-convexe = N} quasi-monotone



On souligne en particulier que les caractérisations ci-dessus sont d’une nature différente et ne peuvent
pas étre déduites des résultats évoqués dans les paragraphes précédents. D’ailleurs, elle sont établies pour
la classe des fonctions continues (et non pas seulement pour les fonctions localement lipschitziennes).

Dans [6], on s’intéresse aussi au probléeme d’intégration de la normale, i.e. déterminer, parmi les
fonctions d’une certaine classe C, celles qui ont le méme opérateur normal.

Notre résultat est le suivant :

Soit C la classe des fonctions quasi-convexes continues telles que:
(i) tout minimum local est global et
(ii) Pensemble arg min f est toujours inclus dans un hyperplan fermé.

Alors, pour f,g € C on a:

Ny =N, < [ est (N, \ {0})-pseudo-convexe.

Applications aux inéquations variationnelles

Dans cette section, on s’intéresse au probleme d’inéquation variationnelle PIV(T, K') d’un opérateur
multivoque T : X =% X sur une partie convexe fermée et non-vide K telle que K C dom7'. Cela consiste
a trouver un x € K tel que pour tout y € K, il existe z* € T'(x)

(x*,y —x) > 0. (24)

Ce probléme a été introduit par Stampacchia (voir [40]) & partir d’un probleme d’E.D.P. Des théorémes
d’existence dans le cas d’un opérateur (univoque) continu, puis monotone et hémi-continu, puis pseu-
domonotone (au sens de Brézis [15]) ont été établis ([40], [34] e.g.).

Cependant, PIV(T, K) présente aussi un intérét en optimisation; on reconnait aisément que (24)
forme une condition nécessaire d’optimalité lorsque T est le sous-différentiel une fonction-objectif. Il est
alors naturel de s’intéresser aux théoremes d’existence quand 7" a une propriété de monotonie généralisée.

Conditions de coercivité optimales

On avait vu dans la section précédente que la pseudo-monotonie (au sens de Karamardian) caractérise
les sous-différentiels des fonctions continues pseudo-convexes. De plus, dans le cas ou T' = 9* f, avec f
pseudo-convexe, la condition (24) est non seulement nécessaire mais aussi suffisante pour que le probléme
de minimisation de f ait une solution. Cela justifie 'intérét d’étudier PIV(T, K) pour un opérateur T'
multivoque et pseudomonotone au sens de Karamardian (voir [35], [54], [59], [19]).

Dans [27], on considére ce probléeme sur des parties non bornées. L’hypotheése classique faite sur
lopérateur, afin d’obtenir des résultats d’existence, est alors une condition de coercivité. Le théoreme
principal de [27] montre que, pour les opérateurs pseudomonotones et semi-continus supérieurement sur un
espace réflexif, trois des conditions de coercivité récemment utilisées dans la littérature sont équivalentes a
Pexistence d’une solution du probleme PIV(T, K). Dans ce cadre, ces trois conditions, alors équivalentes,
sont optimales pour établir I'existence de solutions. Un résultat récent de Crouzeix [19] en dimension
finie se trouve ainsi généralisé et complété.



Quasi-monotonie propre et probléme associé

Une méthode standard pour résoudre le probleme (24) est de résoudre d’abord un probléme associé
([44]). Ce dernier (noté par PIVA(T, K)) consiste & trouver un z € K tel que, pour tout y € K, et tout
y* € T(y) on ait:

(y*,y —z) > 0. (25)

En effet, si 'on établit I'existence d’une telle solution, une conséquence immédiate sera l’existence de so-
lutions du PIV(T, K), pourvu que 'opérateur T soit radialement semi-continu supérieurement, hypothese
habituelle dans toutes les applications.

Notre principale contribution dans cette théorie a été la définition de la notion de gquasimonotonie
propre (voir [26], [28]):

e Un opérateur T : X == X* est dit proprement quasi-monotone si, pour tous x1,x2,... ,2, € X et
tout y = >0 Nmg,ou > A =1et \; >0, il existe i € {1,2,...,n} tel que:
Vai € T'(xz;) : (z],y —x;) <0. (26)

Cette nouvelle notion se situe entre la pseudo-monotonie (ou la quasi-monotonie cyclique) et la quasi-
monotonie, comme le révele le tableau suivant :

pseudo-monotonie

4

quasi-monotonie cyclique = quasi-monotonie propre

4

quasi-monotonie

Toutes les implications ci-dessus sont strictes. Cependant, si T = 0* f est quasi-monotone, alors T’
est aussi proprement quasi-monotone (voir [28]).

On a montré dans [26], [28] que, si T' est proprement quasimonotone, alors (25) a au moins une solution
sur toute partie K faiblement compacte, convexe et non vide (notons qu’aucune hypothése de continuité
n’a été faite sur T'). Récemment R. John [38] a complété ce résultat en montrant que la réciproque est
vraie: si un opérateur T est tel que, pour toute partie compacte, convexe, non vide, (25) a toujours une
solution, alors 'opérateur est proprement quasimonotone :

T est proprement PIVA(T, K) a des solutions,
quasi-monotone VK # (), convexe, w-compacte.

La quasi-monotonie propre est donc une hypothése minimale sur ’opérateur pour assurer ’existence
de solutions du probléme associé. Dans de nombreuses applications des inéquations variationnelles (&
la mécanique, physique etc), 'opérateur est supposé maximal monotone (en particulier égal au sous-
différentiel d’une fonction convexe). En fait, d’aprés nos résultats, existence des solutions du probléme
associé est assurée lorsque l'opérateur est proprement quasimonotone (ce qui est le cas pour les sous-
différentiels des fonctions quasiconvexes).

Inéquations variationnelles vectorielles

Dans [24], on s’intéresse aux inéquations variationnelles vectorielles qui sont notamment liés a ’optimi-
sation multicritere. On obtient des théoremes d’existence en dimension infinie. On donne aussi un contre-
exemple qui révele une erreur dans les résultats principaux de trois articles publiés entre 1990 et 1994.
La preuve du théoréme principal est basée sur lexistence de “points internes” (inner points) qui est une
hypothese faible (en particulier satisfaite pour un espace séparable).
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Intégration d’opérateurs multivoques

Intégrer un opérateur T : X — X*, c’est-a-dire trouver une fonction dérivable f telle que T = [/, a
attiré beaucoup d’attention. Lorsque 'opérateur T est multivoque, cette question devient: trouver une
fonction f telle que T' C 9* f, pour une certaine notion de sous-différentiel 9* ([57] e.g.). Ce probleme a
été entierement résolu par Rockafellar ([53]) dans le cas ou la fonction f est convexe et 9* = 9 est le sous-
différentiel de Fenchel-Moreau de ’analyse convexe. Plus précisement, il a été établi que la monotonie
cyclique maximale est une condition nécessaire et suffisante pour qu’un opérateur T : X == X* puisse
s’écrire sous la forme T' = 0f.

Notons que la méthode développée dans [53] fait appel au caractére global du sous-différentiel O - voir
aussi sa définition dans (3). Le grand avantage et une particularité caractéristique de I’analyse convexe
est le fait qu’une telle approche reste toute de méme équivalente & des approches locales (voir aussi (20)
par exemple). Notons ainsi que dans [14, Corollary 2.1], on trouve une autre méthode pour retrouver le
résultat de Rockafellar.

Dans ce document, les travaux effectués sur ce sujet se répartissent en deux directions:
- une méthode a caractere global, proche de ’analyse quasi-convexe

- une méthode analytique, dans l’esprit de I’analyse non-lisse.

Intégration via le sous-différentiel inférieur

Dans [8] on a travaillé avec le sous-différentiel inférieur &< introduit par F. Plastria dans [51], qui
est une adaptation au cas quasi-convexe du sous-différentiel de Fenchel-Moreau. On a montré qu’une
fonction quasi-convexe lipschitzienne f est caractérisée par ’existence d’une sélection bornée pour son
sous-différentiel inférieur O< f dans un domaine dense.

Par ailleurs, on a considéré une classe d’opérateurs (notée R(zp) ol xo est un point fixé) qui est
strictement plus grande que la classe d’opérateurs cycliquement monotones. Si un opérateur T satisfait
R(z) pour tout = € domT, alors T' est monotone. D’autre part, on a montré qu’un opérateur 7' satisfait
(R(zp)) en un point 2 € domT si, et seulement si, il existe une fonction quasi-convexe hy (avec dhr(zg) #
0) telle que T(xg) C dhr(xg) et T(x) C d<hy(z), pour tout x € X.

Sous-monotonie cyclique et intégration

La propriété de sous-monotonie a été introduite par Spingarn [56] pour caractériser le sous-différentiel
de Clarke d’une fonction “sous-C!”. On rappelle qu'une fonction f : U — R est dite sous-C! (ott U est
une partie ouverte de R™), s’il existe une partie compacte S et une fonction continue F' : U x § — R,
telle que la dérivée V. F' (existe et) est continue sur U X S et que pour tout = € U on ait:

f(x) = max F(z,s). (27)
ses
Cette classe contient a la fois les fonctions convexes continues et les fonctions contintiment dérivables. En-
suite Janin ([37]) a montré qu’en dimension finie, le sous-différentiel de Clarke 9° f d’une fonction f définie
par (27) a une propriété bien plus forte, la sous-monotonie cyclique maximale, et que réciproquement,
pour un tel opérateur 7T il existe toujours une fonction unique (a une constante pres) sous-C! f telle que
T=0°f.

Dans [23], on généralise le résultat de Janin [37] en dimension infinie. Cela nous conduit & étudier la
classe des fonctions sous-lisses (subsmooth), i.e. les fonctions localement lipchitziennes dont le sous-
différentiel de Clarke est cycliquement sous-monotone. Pour de telles fonctions, le sous-différentiel
de Clarke coincide avec celui de Hadamard (donc la fonction est réguliere) et, par conséquent, est
génériquement un singleton. D’apres des résultats récents de Borwein et Wang sur la taille du sous-
différentiel de Clarke (voir [58] e.g.), on conclut aisément que l’ensemble des fonctions sous-lisses est
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maigre dans I'espace des fonctions localement lipchitziennes. Cependant cette classe contient toute fonc-
tion convexe continue et toute fonction contintment différentiable. Le résultat classique de Rockafellar
pour les opérateurs maximaux cycliquement monotones et les fonctions convexes s.c.i. trouve son analogue
pour les fonctions localement lipschitziennes.

Optimisation multi-critere

Cette section comporte :

- une étude sur la connexité de ’ensemble des points Pareto-optimaux d’un probléeme multi-critére (de
dimension finie),

- une étude sur les théoremes de densité en optimisation vectorielle.

Etude de la connexité du probléeme de maximisation de trois critéres semi-strictement
quasi-concaves.

Dans [30], on démontre que 'ensemble des points optimaux (au sens de Pareto) pour trois fonctions
objectif continues et semi-strictement quasiconvexes sur un convexe compact de ’espace euclidien, est
connexe. Ce résultat répond par affirmative a une conjecture émise en 1985 par Schaible, Choo et
Chew. Notons que la conjecture générale concernant n > 1 fonctions objectif a été récemment établie
par Benoist ([9]).

Théorie de densité de Arrow-Barankin-Blackwell

Un théoréeme de Arrow, Barankin et Blackwell [2], relativement connu, assure la densité des points
scalairement maximaux dans I’ensemble des points maximaux d’une partie convexe et compacte de R™.
Ce théoreme a une interprétation économique importante en termes de “panier de biens” et de “prix
optimal”. 1l a été généralisé a plusieurs reprises en dimension infinie pour des cones convexes, fermés
et pointés. Parmi les versions les plus significatives, on peut noter celle de Petschke [49] (donnée aussi
indépendamment par Gallagher et Saleh [32]). Cing ans plus tard, Gong [33] a proposé une amélioration
de ce résultat, en affaiblissant I’hypothese que le cone possede une base bornée. Cependant, aucun exemple
ne montrait le caractére plus général de ce résultat. Dans [21], on établit une caractérisation des points
“denting” pour des parties convexes et fermées d’un espace de Banach, qui généralise la caractérisation
de Lin, Lin et Troyanski [41] établie sous 'hypothese supplémentaire que ces parties soient bornées. Cette
nouvelle caractérisation permet de démontrer que les hypotheses des théoréemes de Petschke et de Gong
sont, en fait, équivalentes. Notre technique a aussi I'avantage de raccourcir les preuves originales de [49],
[32] et [33].
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SUBDIFFERENTIALS OF CONVEX FUNCTIONS
AND SIGMA-CYCLIC MONOTONICITY

ARIS DANIILIDIS

The property of o-cyclic monotonicity is proposed here to describe subdifferentials
of Isc convex functions that are continuous in their domains. It is shown that all
monotone operators in R and all densely defined cyclically monotone operators in
R™ share this property. Examples of a densely defined maximal cyclically monotone
operator in a Hilbert space and of a subdifferential of a convex Isc function in R2
which are not o-cyclically monotone operators are given.

1. INTRODUCTION AND PREREQUISITES.

In [5], Rockafellar introduced the class of cyclically monotone operators in order to
describe the subdifferentials of convex lower semicontinuous (Isc) functions. His main
result states that an operator T : X — 2X" is included in the subdifferential & f of a lsc
convex function f if, and only if, it is cyclically monotone. In particular, T’ coincides
with df if, and only if, it is maximal cyclically monotone (with respect to the inclusion
of graphs).

In this article we refine the notion of cyclic monotonicity by introducing an infinite
variant of it that we call o-cyclic monotonicity. We show that this property is always sat-
isfied by the subdifferentials of convex Isc functions that are continuous in their domains,
and hence by the subdifferentials of all convex Isc functions in R. A simple example
shows that subdifferentials of discontinuous convex lIsc functions in R? may fail to be
o-cyclically monotone. However, in finite dimensions, cyclic and o-cyclic monotonicity
coincide for the class of the densely defined operators. This is no longer true in infinite
dimensions. In particular, there exists a convex lsc function f in a separable Hilbert
space, for which Of is a densely defined maximal cyclically monotone operator, without
being o-cyclically monotone.

Before we proceed we fix our notation: X will be a Banach space with dual space
X*. In particular, we denote by £(N) the Hilbert space of square summable sequences,

Received 17th June, 1999
This research was supported by the TMR post-doctoral grant ERBFMBI CT 983381. The author

is grateful to D. Aussel, N. Hadjisavvas and J.-P. Penot for having read a preliminary version of the
manuscript.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/00 $A2.00+0.00.

269



270 A. Daniilidis [2]

by ¢'(N) the Banach space of absolutely summable sequences and by £°(N) the Banach
space of bounded sequences. We also denote by co(N) the space of eventually null
sequences. For any z € X and z* € X* we denote by z*(z) the value of z* at z. For
r € X and ¢ > 0 we denote by B.(z) the closed ball centred at z with radius ¢ > 0.
Finally for z, y € X we denote by [z,y] the closed segment {tz + (1 -ty : t €0, 1]}.
The segments (z,y], [z,y) and (z,y) are defined analogously. Throughout this article
we always deal with multivalued operators T defined on X and taking values into 2X
(the space of subsets of X*), and with proper convex lsc functions f : X — RU {400}
which are not identically equal to {+00}. We set dom(f) := {z € X : f(z) € R} for
the domain of f and dom(T) := {z € X : T(z) # 0} for the domain of the multivalued
operator T'.

A function f : X — R U {+oo} is said to be continuous (respectively lower
semicontinuous), if it is continuous (respectively lower semicontinuous) at every point
z € X, where RU {+oc} is equipped with the topology generated by the family
Sp U {(z,+oo], T € R} (Sr being the usual topology of R). Note that such func-
tions may take infinite values, as for instance the function f : R — R U {+o0o} with
f(z) = 1/z if £ > 0 and +o0 if z < 0. On the other hand, we say that a function f is
continuous on a subset S of its domain, if its restriction to S is a continuous (real-valued)
function, see also [4, p.82]. The class of convex lsc functions which are continuous in their
domain is much larger than the one of convex continuous functions. In particular, it con-
tains the indicator functions of closed convex sets, as well as many other non-continuous
functions, see [3, Example 3.8 (a)].

We recall that the subdifferential 8f of the function f at the point 2o € dom(f) is
given by the formula below:

(1) 0f (zo) = {z* € X*: f(z) — f(z0) > z"(z — 7o), Vz € X}

For a lsc convex function f, the above subdifferential coincides with the Clarke-
Rockafellar subdifferential 8" f(zo) which was defined in [6] (see also [2]) as follows:

(2) 8 f(zo) = {z* € X : 2*(d) < f1(z0,d), Vd € X}.

where f1(zo,d) is the generalised derivative of f at z¢ in the direction de X:

td') —
(3) {1(zo,d) = sup limsup inf L) =1(@)
>0 z—jz0 d'€B.(d) t
ot
where t \, 0t indicates the fact that £ > 0 and ¢ — 0, and T — T means that both

z = 1o and f(z) = f(zo).

2. MAIN RESULTS

Let T : X — 2X be a multivalued operator. We recall from [3] the following
definition:
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DEFINITION 1: T is called cyclically monotone, if for any n € N, for every

Zg,T1, .., In in X and every zj € T(xo), z7 € T(z1), ..., ) € T(z,) one has
n

(4) > @i (@i — ) <0
s

where z,41 := Zg.
We recall from [5] the following fundamental theorem.

THEOREM 2. T is cyclically monotone if, and only if, T C df for some convex
Isc function f.

As shown in [5], if we assume that T is maximal cyclically monotone, then the above
inclusion becomes an equality and the function f turns out to be unique.
Let us now introduce the notion of o-cyclic monotonicity.

DEFINITION 3: T is called o-cyclically monotone, if for every sequence (z,)1% in

X such that lim z, = zy and for every z} € T(z;) (for i = 0,1,2,...) one has
n—oo

n
(5) lim sup Z T} (Zip1 — 2i) < 0.
n—o0 i=0

It is easily seen that every o-cyclically monotone operator is cyclically monotone.
Indeed, given a multivalued operator T and a finite sequence {z¢, 71, ..., £, } in dom(T),
one can define an infinite sequence (z;);5 in dom(T'), by setting zx = zg, for k > n+ 1.
Then relation (5) clearly yields (4).

The following proposition shows that the class of o-cyclically monotone operators
contains the subdifferentials of functions which are continuous on their domain, thus in
particular these of convex continuous functions. (Note also that the proof below does not
require the convexity of f.)

PROPOSITION 4. Suppose that f: X — RU{+o0} is continuous on dom(3f)
and T C f. Then T is o-cyclically monotone.
PROOF: Consider any sequence (z,);25 in dom(T) such that lim xz, = zo. For any
n—o0

z: € T(z,), the inclusion T(z,) C 8f(z,) together with (1) implies:
(6) f(@ns1) 2 f(zn) + 23 (Tns1 — Tn)
forn=0,1,2,.... Adding the above inequalities we get

351 (@i — 2:) < f(@nn) — f(20)-
1=0

Taking the limit as n — +o00, and using the continuity of f on dom(df), we conclude

that limsup Y z} (241 — ;) < 0. 1

n—o00 i=0
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One deduces that the subdifferentials of indicator functions of convex sets are o-
cyclically monotone operators. The same is true for the subdifferentials of all Isc convex
functions of one variable. More generally we show the following:

COROLLARY 5. Let T : R — 2R be a monotone operator (that is, T satisfies (4)
forn =1). Then T is o-cyclically monotone.

PRrROOF: It is known that every monotone operator in R is cyclically monotone (see
[5]), hence Theorem 2 ensures the existence of a lIsc convex function f: R - RU {+o0}
such that T C 8f. We shall show that f is continuous on its domain (which is a segment
of R), hence the result will follow from Proposition 4. Since f is continuous at every
interior point of its domain, it suffices to consider only the (eventual) case of a point z,
in dom(f) such that zq < z for all z € dom(f). (The case =y > z for all z € dom(f) can
be treated analogously.) Suppose for simplicity that o = 0 and f(z,) = 0 and consider a
sequence (Z,), in dom(f) such that nﬁrfwzn = 0. Since f is Isc, one gets l,if_ﬂ&ff(z") > 0.
Suppose now that there exists z in dom(f) with f(z) > 0. From convexity of f it follows
that f(tz) < tf(z), for all t € [0, 1], hence in particular tl\i‘rgl f(tz) = 0. It follows easily
that limsupf(z,) < 0. 0

n—+00

The above result fails in R? even if T is maximal cyclically monotone. This is shown
by the following example:

ExAMPLE. Consider the function f : R2 - RU {+oo} given by the formula

zi/z, ifz, >0
flz1,z2) =< 0 fzy,=2,=0
+0o  elsewhere

In [4, p.83] it has been shown that f is convex and lower semicontinuous. This function
is a classical example of a non asymptotically well behaved function and has been used
several times in the past. We show that the operator T = 9f is not o-cyclically monotone.
Note first that f is differentiable at every non-zero point of its domain, with gradient
Vf(z1,72) = (—(22/21)% 2(z2/21)). Set now z, = ((1/(n+ 1)%,1/(n+1)) and z;, €
8f(zn) = {Vf(zn)}. It follows that Jim z, =0 and that T (Tns1 — ) >0, forn > 1.
Since f attains its minimum at zo = 0, it follows that 0 € 3f(x,). Setting zj = 0 we
obtain:

n
lim sup {x(‘;(zl —z9) + Zx;'(a:,-ﬂ - x,-)} >0
n—o0 i=1

which shows that T is not g-cyclically monotone.

One may observe that in the previous example the domain of T is included in a
half-space. This condition is in fact indispensable for such examples in finite dimensional
spaces. This is shown by the following proposition.
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PROPOSITION 6. Let T : R* — 2" be a densely defined cyclically monotone
operator. Then T is o-cyclically monotone.

ProoF: Since T is cyclically monotone, we conclude from Theorem 2 that for some
convex lIsc function f we have T C 8f. Since dom(T) is dense in R™ and dom(T") C
dom(df) C dom(f), it follows that dom(f) is also dense. Since the latter set is convex, we
infer that dom(f) = R", hence f is continuous. The result now follows from Proposition
4. 0

The statement of Proposition 6 is no longer true in infinite dimensional spaces, even
if one assumes T to be maximal (that is, equal to the subdifferential of a lsc convex
function f). We shall use the following result, which is a version of the approximate
mean value theorem for the Clarke-Rockafellar subdifferential, see [1, Corollary 4.3]:

PROPOSITION 7. Let f: X — RU {+oo} be a Isc function and a, b € X be

such that f(a) < f(b). Then there exist ¢ € [a,b], ¢ # b, and sequences (ZTn)nen In X
and (2})nen in X* with 2, € 8" f(zn), n = ¢, f(za) — f(c) such that:

zh(z— ) >0

for alln € N and every z = ¢+ t(b— a), with t > 0.

PROPOSITION 8. There exists a Isc convex function f on ¢*(N) such that its
subdifferential 8f is densely defined without being o-cyclically monotone.

PrROOF: Let X = ¢2(N). We consider the function f : X — RU {+oo} defined for
every 7 = (z;)1%5 € X as follows:

400
(7) f@)=llzlli = | =]
i=1

Since f is the pointwise supremum of the convex continuous functions ¢, : X — R given

by pn(z) = Zn: | z; |, it follows that f is lower semicontinuous and convex. From [5] (or
(3]) we havel that 8f : X — 2%" is maximal cyclically monotone. We shall show that 0f
is not o-cyclically monotone.

Let us first observe that dom(f) = £!(NN). On the other hand one can easily see that
f is nowhere continuous. Using the inclusions £(N) C £>(N) C £*(N) := [¢4(N)]", the
relation [2(N)]" = ¢3(N) and the fact that f(y) = +oo for all y € £#(N)\ Z1(N), it

follows from (1) that for every z € dom(f):
(8) af(z) = 8(ll - l1)(z) N E3(N)

where 8(|| - |l1)(z) denotes the usual subdifferential of the norm |- ||, in ¢*(N), as a subset
of £=(N).
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Relation (8) shows that dom(df) is dense in X, since it contains for instance the
space coo(N). Setting now z = 0 in (8) we obtain in particular that:

(9) 8f(0) = {y = (yn)n € P(N): | yn | <1}

We shall need the following claim.
CraiM. There exists a sequence {y,)125 in dom(f) such that for all n > 1:
(i) yn € Bi/a(0)
(i) flyn) < f(yns1)
(iii) the restriction of f to the segment [y, yn41] is strictly increasing.

ProOF: We first note that for every € > 0, the function f takes arbitrarily large
finite values in the ball B (zo).
Set now k; =1 and y; = €, := (1,0,0,...). For ap € R and k3 > k; + 1 we consider:

(10) Yo = Z Q9€; = (0,&2,&2,...,(12,0, 0,)

Imposing ||yz|| = 1/2 and f(y2) = 2 we conclude that a; = 1/8 and k; — 1 = 16.
One can also check directly that condition (iii) is also satisfied for the segment {y;, y2).

We shall now use induction to construct a sequence (y,);'%} in coo(/V), such that for
every n 2 1, |lyall = 1/n, f(yn) = n and the restriction of the function f to the segment
[Yn_1,Yn] is strictly increasing. To this end, suppose that for n 2> 1 we have defined
Yn € coo(N), kn € N and a,, € R such that

kn
(11) Yn = Z ane; := (0,0, ...,0, 00, 0, ..., 0, 0,0, ...)

t=kn-1+1
where (k, — kn_1)an, = n and (k, — kn—1)o2 = 1/n?. We then define (for n + 1)

ka1

(12) Yn+1 = Z Qn41€; = (Ov 07 ey 07 Oa cey 09 Qnt1y Ontly ooy Ong, 01 01 )
i=kn+1

where kny1 and ony, are such that (knii — kn)ans1 = n+ 1 and (knyy — kn)od,, =
1/(n +1)2. 1t now suffices to check that the function

t = p(t) = f(Yn + tYns1 — ¥n))
is increasing, for ¢ € [0, 1]. Indeed, using (7), (11) and (12), a direct computation gives:
p(t) = (1 — t)(k" - kn—l)an + t(kn+1 - kn)anH.

It follows that p'(t) = (knt1 — kn)@n+1 — (kn — kn—1)an = (n+1) —n =1 > 0. The proof
of the claim is complete. 0

We now construct a sequence ()19 C dom(df) such that:
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(a) ”mn _yn” S “yn”7 n= 1v27""

(b) z3(Tnt1 —xn) > 0,forallne N.
Let 2o = 0. Using (9) we can find some zj € 8f(0) such that z}(y; — o) > 0. Consider
now the open set Uy = {2’ € X : z3(z' — zo) > 0}. Take any z; € UyN [y1, y2] N Byjyy i (v1)-
By the condition (iii) of the above claim we have f(z;) > f(v1). Since the function f is
convex and lower semicontinuous, its convex subdifferential 3f coincides with the Clarke-
Rockafellar subdifferential 07 f. Hence, since y, = y;+A(22 — 1) for some A > 1, applying
Proposition 7 (for a = y, and b = 2,) we conclude the existence of some z, € By, (y1)NUs
and some x} € 0f(z1) such that z}(y, — z,) > 0. Note also that since z; € Uy we have
zy(x1 — zp) > 0.

We further set Uy = {2’ € X : z{(z’ — z1) > 0}. Since Uy N [z, y3] N By, (y2) is
nonempty, we may choose z3 € Uy N [y2, ¥3] N By, (y2). Condition (iii) again guarantees
that f(23) > f(y2). Repeating the above arguments one inductively constructs a sequence
(zn)+2% having properties (a) and (b).

Since ||yn]] — 0, it follows from (a) that nlgxolo zp, = 0 := z4. It follows now directly

from (b) that df is not o-cyclically monotone. 0

The above counterexample shows that, in infinite dimensional spaces, maximal cycli-
cally monotone operators (having even a dense domain) may fail to be o-cyclically mono-
tone. However this can not happen if the operator T is locally bounded on its domain.
More generally we say that an operator T has a locally bounded selection on a subset D
of its domain, if for every zy € X there exists M > 0 and § > 0 such that:

(13) Vz € DN Bs(x), 32* € T(2) : ||z°|| <

We are now ready to state the following result for infinite dimensional spaces.

PROPOSITION 9. LetT be adensely defined cyclically monotone operator that
admits a locally bounded selection on its domain. Then T' is o-cyclically monotone.

PRrROOF: Using Theorem 2 we conclude that T C 9f, for some convex Isc function
f. It follows that 0f has a locally bounded selection on dom(7T) (C domdf). From
Proposition 4 it suffices to show that f is continuous. To this end, consider any zy € X
and choose M > 0 and & > 0 so that (13) is satisfied. Since dom(T') is dense on X, there
exists a sequence (Zp)nen in dom(8f) N Bs(xo) such that llm 0L, = To and z;, € 3f(x,),
with ||z%]] < M. Take now any z € Bj(zo) N dom(f) 96 (Z) It follows from (1) that
f(zn) € f(z)+z}(z,—x). Since f is lower semicontinuous, taking the limit as n — +oo

we conclude
f(zo) < fz) + M||zo — 2]

It follows that zo € dom(f), hence dom(f) = X and f is continuous. 0
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FINAL CONCLUSION. Most arguments used in the proof of Proposition 8 are also valid
for subdifferentials of lsc convex functions f for which the restriction f, (s5) has a
discontinuity at some zo € dom(df). Consequently one expects that a subdifferential 0 f
of a Isc convex function f is o-cyclically monotone (if and) only if fj,._(a7) is continuous.
This conjecture would be positively answered if for example one could establish the
validity of the claim in the proof of Proposition 8 for the general case.

REFERENCES

[1} D. Aussel, J.-N. Corvellec and M. Lassonde, ‘Mean value property and subdifferen-
tial criteria for lower semicontinuous functions’, Trans. Amer. Math. Soc. 347 (1995),
4147-4161.

[2] F.H. Clarke, Optimization and nonsmooth analysis (Wiley Interscience, New York, NY,
1983).

[3] R.Phelps, Convez functions, monotone operators and differentiability (2nd edition), Lec-
ture Notes in Mathematics 1364 (Springer-Verlag, Berlin, 1991).

[4] R.T. Rockafellar, Convez analysis (Princeton University Press, Princeton NJ, 1970).

[5] R.T. Rockafellar, ‘On the maximal monotonicity of subdifferential mappings’, Pacific J.
Math. 33 (1970), 209-216.

(6] R.T.Rockafellar, ‘Generalized directional derivatives and subgradients of nonconvex func-
tions’, Canad. J. Math. 32 (1980), 257-280.

Laboratoire de Mathématiques Appliquées
CNRS UPRES A 5033

Université de Pau et des Pays de I’Adour
avenue de !'Université

64000 Pau

France

e-mail: aris.daniilidis@univ-pau.fr



Article [2]

“Dual characterizations of relative continuity of convex functions”
J. Austral. Math. Soc., (Series A) 70 (2001), 211-223.

J. Benoist
A. Daniilidis






J. Austral. Math. Soc. 70 (2001), 211-223

DUAL CHARACTERIZATIONS OF RELATIVE CONTINUITY OF
CONVEX FUNCTIONS

J. BENOIST and A. DANIILIDIS
(Received 6 March 2000; revised 20 September 2000)

Communicated by G. Willis

Abstract

Various properties of continuity for the class of lower semicontinuous convex functions are considered
and dual characterizations are established. In particular, it is shown that the restriction of a lower
semicontinuous convex function to its domain (respectively, domain of subdifferentiability) is continuous
if and only if its subdifferential is strongly cyclically monotone (respectively, o-cyclically monotone).
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1. Introduction

Let X be a Banach space and f : X — R U {400} a lower semicontinuous (in
short 1sc) function. A recent result of Correa, Jofre and Thibault [3] asserts that f
is convex if and only if its Clarke-Rockafellar subdifferential df is monotone. The
same equivalence has also been established for abstract notions of subdifferentials (see
[1], for example). In the aforementioned cases, since any notion of subdifferential
of a convex function coincides with the classical Fenchel-Moreau subdifferential,
it follows that df is not only monotone, but also cyclically monotone (see [6], for
example). This latter property (that is, cyclicity) is not just a stronger property than
mere monotonicity, but it expresses a behaviour of certain type. This behaviour has
already been discussed in relation with integration problems ([2], for example) as well
as in generalized convexity [5].

While cyclic monotonicity describes the behaviour of an operator around a ‘cycle’
of finite points, a variant of it—called o -cyclic monotonicity—was introduced and

© 2001 Australian Mathematical Society 0263-6115/2001 $A2.00 + 0.00
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studied in [4]. Compared with cyclic monotonicity, this new property carries additional
information on the operator, since it describes its behaviour along infinite cycles
formed by converging sequences. In particular, the fact that the subdifferential 3f of
a function f is o-cyclically monotone guarantees a certain continuity property for the
Isc convex function f .

In this article we show that the restriction of a Isc convex function to its domain
of subdifferentiability is continuous if and only if its subdifferential is o-cyclically
monotone; (this result was conjectured in [4]). We also introduce the strong cyclic
monotonicity, and show that this property characterizes the subdifferentials of the lsc
convex functions having a continuous restriction to their domain, see Section 4.

The paper is organized as follows. In Section 2 we give some preliminary results
and we fix our notation. In Section 3 we prove a local version of Rockafellar’s
formula [8] concerning the representation of the Isc convex functions. This local
representation—apart from its independent interest—will be in use in Section 4,
where we establish dual characterizations of the continuity of the functions f |gom
and f |somas for a Isc convex function f. Finally, in the same section, we give some
criteria for an operator to be strongly cyclically monotone (respectively, o-cyclically
monotone) and we classify the various concepts of cyclic monotonicity.

2. Preliminaries

In the sequel, X will denote a Banach space and X* its dual. For any x € X and
x* € X* we denote by (x*, x) the value of x* at x. For x € X and ¢ > 0 we denote
by B(x, €) the closed ball centered at x with radius ¢ > 0, while for x, y € X we
denote by [x, y] the closed segment {rx + (1 — #)y : t € [0, 1]}. For any closed
segment [x, y] in X and any ¢ > 0 we denote by B([x, y], ¢) the e-neighbourhood of
the segment [x, y], that is,

B([x,y),&) :={we X :3z € [x, y]l with [z — w]|| <¢&}.

Given a function f : X — R U {+o0o}, we denote by domf := {x € X :
f(x) € R} its domain. We say that f is continuous (respectively Isc), if it is
continuous (respectively Isc) at every pointx € X, where R U {+00} is equipped with
the topology generated by the family Sg U {lx, +00], x € R} (3g being the usual
topology of R). Note that such functions may take infinite values, as for instance the
function f : R = R U {400} with f (x) = 1/x ifx > 0 and +o0ifx <O.

Concurrently, a function f is said to have a continuous restriction to a subset S of
its domain, if f | is a continuous (real-valued) function, see also [7, page 82].

Throughout this article we shall deal with proper (that is, not identically equal to
{+00}) Isc convex functions. Let us remark that the class of Isc convex functions
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with a continuous restriction in their domain is much larger than the one of convex
continuous functions. It contains in particular all indicator functions of closed convex
sets, as well as many other non-continuous functions, see [6, Example 3.8 (a)].

We recall from [6] that the subdifferential 3f of the function f ata pointx € dom f
is defined as follows

) fxX)=x"eX : fQy)—fx)=>({x*y—x), Vy € X}.

Finally, 7 : X =3 X* will denote a multivalued operator defined on X and taking as
values subsets of X*. We denote by dom T := {x € X : T(x) # @} its domain. We

recall that T is cyclically monotone if for any n € N, for any xo, x, ... , x, in X and
for any x§ € T(xo), x{ € T(xy), ... ,x, € T(x,) we have
) D (x! X —xi) <0,
i=0
where x,;, := xo. Moreover, if T is not strictly contained (in the graph sense) in

any other cyclically monotone operator, then it is called maximal cyclically monotone.
Typical (and in fact exclusive) examples of maximal cyclically monotone operators
are the subdifferentials df of convex Isc functions (see [6], for example).

3. Representation of convex functions

Rockafellar has proved in [8] that if T is cyclically monotone, then there exists a
Isc convex function f such that T < 3f . The proof of this result involves a typical
construction based on T. In particular, starting from any point x, of the domain of T
(which is supposed to be nonempty), he defined the following Isc convex function f7

n—1
(3) fr(x) =supq(x,, x -xn)+2(x73xi+l —Xi)} + ¢,
i=0
where ¢ is an arbitrary constant and the supremum is taken over all n > 1, all
X1, X3, ... ,x,indom T and all x; € T(xo),x] € T(xy),...,x; € T(x,).
Let us note that x, appears in all sums at the right hand side of (3) and that cyclic
monotonicity property guarantees that f(xo) = ¢, hence, in particular, dom fr # 0.
It is proved in [8] that the function fr is unique up to a constant, whenever the
operator T is maximal cyclically monotone, in which case T = of 7.
Applying this result to the maximal cyclically monotone operator df , (3) yields
(for ¢ = f (xo)) the following representation for the Isc convex function f

n—1

) f@)y =sup(xix —xa) + D (xf, X —xi) t + f (%0),

i=0
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where the supremum is taken over all n > 1, all x,x;,...,x, in domdf and all
x5 € 9f (x0), x7 € Of (x1),...,x} € of (x).

This representation is global, in the sense that there is no limitation for the choice
of the points x;, x,, ... , x, in the above supremum. Let us now produce a localized
version of the formula (4) which will be useful in the sequel.

PROPOSITION 1. Let xo € dom df . Forany x € X and ¢ > O we have

n—1i
) fE)=f(x0)+sup{xix —x)+ ) (¥ Xis — X |
i=0

where the supremum is taken over all n > 1, all
(6) X1, X2, ..., X, in domaf N B([xo,x], €)

and all x§ € df (xo), x} € of (x1), ... ,x; € of (xn).

Note that comparing with (4), the choice of the points xy, x,, ..., x, is constrained
into the e-neighbourhood of [xg, x].

PROOF. Let us consider the indicator function h of the closed set B([xo, x], &),
given by

0  ifye B([xo,x]8);
h(y) = .
+o0o if y ¢ B([xo,x}, &).

Since B([xo, x], €) is convex, for every y € B([xo, x], €) and y* € dh(y) we have
(7) (y*vx/_y) foa Vx/ (S B([XO,X],S).

Let us now consider the Isc convex function g(y) = f (y) + h(y) and let us remark
that domdg C domg C B([x¢, x], €). Since dom f N intdom A # @, it follows [6,
Proposition 3.15] that

(8) 0g(y) = of (y) + oh(y),

for all y € B([xo, x], €).
Applying formula (4) for the lsc convex function g at the point x, and using the
fact that g(y") = f (y') for all y’ € B([xo, x], €), we get

n—1
©) f@)=f (o) +sup i (xh,x —x) + ) (], X —xi) ¢,
i=0
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where the supremum is taken over all n > 1, all x,,x,,...,x, in domdg and all
x5 € 0g(xo), x7 € g(x1), ... , Xy € 08(x,).

In particular, for any M < f (x) — f (xo), there exist Xy, Xz, ... , X, in B([xo, x1, €)
and x} € 9g(xq), x{ € 3g(x1), ..., X, € dg(x,), such that
n-1

M < (x;,x — Xn) +Z(X?,xi+| —Xi).

i=0

Using (8), fori =0, 1,... ,n, we can write x} = z; + y;, where z} € of (x;) and
y! € dh(x;). It now follows from (7) that

n—1

M < (z;,x —x,) + Z(z?,xfﬂ - Xi).
i=0

Since M is arbitrarily chosen, the proof is complete. 0

4, Main results

In this section we establish dual characterizations for the class of proper Isc convex
functions f such that f |4mar (respectively f laoms) IS continuous. These characteri-
zations involve properties stronger than (but reminiscent of) cyclic monotonicity for
the subdifferential of .

Let us first state the following interesting result.

PROPOSITION 2. Let xo € dom df . Then the following are equivalent:

() f laoms is continuous at xo;
(i) f laomar is continuous at xo.

PROOF. We obviously have (i) implies (ii). For the inverse implication, suppose
that f |4oms 1S DOt continuous at x. There then exists ¢ > 0 such that for all i > 1,
there exists x; € dom f N B(x,, 1/i) with

If (i) = f (xo)| > &.
Now for each i > 1, we may find y; € domdf N B(xo, 2/1) with
)= F Ol <3

(this is possible because domdf is graphically dense in dom f). Then we have
{yi} = xoand |f (y;) — f (x0)| > e/2 for all i > 1, which contradicts (ii). O
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4.1. Relative continuity on dom df
We recall from [4] the following definition.

DEFINITION 3. (i) Letx, € X. An operator T is called o-cyclically monotone
at xg, if

(10) limsup » (x], %1 —x;) <0
n—oo l=0
for all x} € T(xo), for all {x;};>, in dom T satisfying lim;, X; = Xo and all {x}};>;
in X* satisfying x} € T(x;) forall i > 1.
(ii) The operator T is called o -cyclically monotone, if it is o-cyclically monotone
at every xo € X.

Let us note that Definition 3 implies (in a trivial way) that T is o-cyclically
monotone at any x ¢ dom T.

It is also easily seen that every o -cyclically monotone operator is cyclically mono-
tone. Indeed, given points xo, X1, . . ., x, in dom T, it suffices to consider the sequence
{x;}i>1 in dom T, where x; = xo, for i > n + 1. Then relation (10) clearly yields (2).

The following theorem gives a positive answer to a conjecture raised in [4].

THEOREM 4. Let xo € dom df . The following are equivalent:

(i) f lsomar is continuous at X
(i1) of is o-cyclically monotone at x.

PROOF. (i) implies (ii). Let {x;};»\ be any sequence in dom df such thatlim;_, o x; =
xo. For any x! € 9f (x;), relation (1) implies

11 fxi) = f(x) = (0], xip — xi).

Adding (11) from i = O to an arbitrary integer n we obtain

f @) = f (o) 2 Y (%], X1 — %)
=0
As n — 400, the continuity of f |4msr at xo yields (10).
(i) implies (i). Suppose that f |smas is NOt continuous at xo. Since f is Isc at
xo, we deduce the existence of a sequence {x;};> in dom df, such that x; — xo and
liminf, o f (x;) > f (x0). Take any & > O such that

lim+inff (x;) = f (x0) + 2e.

Let us fix i € N. Using Proposition 1 for the points x; € domdf and x;4; € X
and for the number 1/(i + 1) > 0, we deduce the existence of a finite sequence
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Yils Yizsr - -+ » Yig in dom3f N B([x;, xi1], 1/ + 1)) and of y;, € of (io), ¥i; €
of in)s---»Yix, € Of (¥ix,) such that
ki e
(12) Z(y:jayi,j+l —¥ij) = f ip) = f (1) = 2’
j=0
where by convention y;¢ := X, Yik+1 = Xip1. SUmming (12) from i = 0 to an
arbitrary integer n, we obtain

n ki n
£
Z Z(y:jayi,j+l = Yij) = f (K1) — f (x0) — 21
i=0 j=0 i=0
Taking the upper limit as n — 00, the last inequality yields
n ki
limsup Y > (¥5;, Yijer = Vij) Z €
n=>+00 o j=0
Since the sequence {Yo.0, - - - » Youkgs Y105 - - - » Yiky» - - - } 1S NOTM converging to xo, we
conclude that 9f is not o-cyclically monotone. O

We can easily deduce the following corollary.

COROLLARY 5. The following statements are equivalent:.

(i) f laomas is continuous;
(ii) 9f is o-cyclically monotone.

We state below some typical examples of Isc convex functions such that S ldomar 18
discontinuous.

EXAMPLE 1 ([7, page 83]). Let the function f : R? — R U {400} be defined by

x2/xy ifx; >0
f(xl’x2)= 0 ifx1 =X2=0;

+00  elsewhere.

The above function is Isc and convex (the latter can be verified by calculating the
Hessian). Considering the sequence (1 /n®, 1/n) we conclude that f [goms is not
continuous at (0, 0).

EXAMPLE 2. Let the function f : £2(N) — R U {400} be defined by

+00
f@=lxlh=)_Ixl
i=0
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for every x = {x;} € £*(N). Since f is the pointwise supremum of the convex
continuous functions f, : £2(N) = R U {+o0o} defined for all x = {x;} € £2(N) by
fa(x) =37 Ix;l, it is obviously convex and Isc. However, f |4oma is discontinuous
at any point of its domain. (Note that in this example the domain of the function f is
dense).

4.2. Relative continuity on dom f
Let us first give the following definition.

DEFINITION 6. Let xo € X. An operator T is called strongly cyclically monotone
at xo, if for every & > 0 there exists § > 0 such that for every x, € dom T N B(xy, §),
for every sequence {x;};», in dom T satisfying lim;_,» x; = xo, and for every sequence
{x!}i»1 in X* satisfying x} € T'(x;) forall i > 1, we have

(13) lim sup Z(xj‘,xf+1 —x;) < e

n—>o00
i=1

Let us note that T is strongly cyclically monotone (in a trivial way) at every point
in the complement of dom 7.

PROPOSITION 7. Let xo € X. If T is strongly cyclically monotone at xo, then T is
also o-cyclically monotone at xo. The converse is true whenever x, € dom T.

PROOF. Suppose that T is strongly cyclically monotone at x,. It suffices to consider
only the case x, € dom 7. If {x,};», is any sequence in dom T such that im0 Xx; =
xo, then for any ¢ > 0 we can apply (13) for the sequence (y;};>, defined by y, := xo
and y; 1= x;_, for all i > 2 (note that y, € dom T N B(xo, §) for all §). Since ¢ is
arbitrary, we easily conclude that (10) is verified, hence T is o-cyclically monotone.

Conversely, suppose that xo € dom T and that T is o-cyclically monotone at xo.
We shall show that T is strongly cyclically monotone at xo. Let & > 0. Then pick
any x3 in T(xo) and set § = &/||x|l (if x5 = O, then take § = 1). Then for every
xy € dom T N B(xg, §), we have

(14) [{x5, x1 — xo)| < €.

Since T is o-cyclically monotone at x,, it follows that for every sequence {xi}i>2 In
dom T satisfying lim, .., x; = X, and for every sequence {x;};», in X* satisfying
x} € T(x;) forall i > 1, we have

(15) lim sup Z(x;",xi+1 —x;) <0.

- .
n—-oc i=0

Combining (14) and (15) we conclude that T is strongly cyclically monotone at x,. O
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Consider now the case where T = 9f. Since domf = domdf, we conclude
that 9f is o-cyclically monotone at every xo € X \ dom df and strongly cyclically
monotone at every xo € X \ dom f. It now follows from Proposition 7 that for any
xo € dom df , 9f is strongly cyclically monotone at x, if and only if 3f is o-cyclically
monotone at xo (if and only if f |sms is continuous at x,). The following theorem
(analogue to Theorem 4) deals with the case xo € dom f .

THEOREM 8. Let x, € dom f. The following are equivalent:
(1) f laoms is continuous at xo;

(it) of is strongly cyclically monotone at x,.

PROOF. (i) implies (ii). Let ¢ > 0. According to (i), there exists 8 > 0 such that
for all x € dom of N B(xy, 8)

(16) f ) = f (o)l <&

Fix any x, in domdf N B(x,, ). Consider now any sequence {x;};>; in dom of
satisfying lim;_, ., x; = xo. Then for all i > 1 and all x} € of (x;), we have

17 f@xiv) = f () = (x], xip — x3).

Adding (17) from i = 1 to an arbitrary integer n, we obtain

n

S Gng) = f(x1) > Z(x,-*,xi-n —X;).

i=l1

As n — +o00, the continuity of f |4om s together with (16) yields (13).
(i1) implies (i). Suppose that f |goms is not continuous at x,. Then since f islsc,
there exists £ > 0 and {x;},», in dom f satisfying lim;_, o X; = x, such that

(18) liminf f (x;) > f (xo) + 3¢.

Since dom df is graphically dense in dom f ([6, Theorem 3.17]), without loss of
generality we assume that {x;};>; is in dom 3f . Moreover, for any § > 0, we may
choose x; ; in dom 8f N B(x,, ) such that

If (x1s) — f (x0)| < &.
It follows that
(19) hmlnff ('xl) >f(xl5) +2£

Applying Proposition 1 successively for the points {x, s, x,} and {x;, x;;,} fori > 1,
and repeating the arguments of the final part of the proof of Theorem 4 ((ii) implies (i))
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we deduce the existence of a sequence {z;}; in X satisfying zo := x; 5 and lim;, 0 2; =
xo, and of a sequence {z}};» satisfying z} € 9f (z;) for all i, such that for every n we
have

pn)
Z(Z?. Zivt — i) = f (eng1) — f (1) — &,
i=0
for some increasing function ¢ : N — N. As n — 00, thanks to (19), we obtain

n
lim sup Z(zf, Tiv1 — ) > €.

n0 =0
Thus 9f is not strongly cyclically monotone at xo. O

We shall say that 9f is strongly cyclically monotone on dom f if it is strongly
cyclically monotone at every point of dom f . The following corollary is analogue to
Corollary 5.

COROLLARY 9. The following are equivalent:.

(i) f ldoms is continuous;
(ii) of is strongly cyclically monotone on dom f .

REMARK. Combining Proposition 2 with Theorem 4 and Theorem 8 we obtain an
indirect way to establish Proposition 7 for the special case T = df .

Finally, the following proposition shows that df is not strongly monotone at any
xo € dom f \domf.

PROPOSITION 10. Let xo € dom f \ domf. Then 3f is not strongly cyclically
monotone at Xo.

PROOF. Since f is Isc and xo ¢ dom f, it follows that for any sequence {x;};> in
dom 3f satisfying lim;_,o X; = xo we have lim; . f (x;) = +00. Using the same
arguments as in the proof of Theorem 8 ((ii) implies (i)), for every M > 0 we obtain
the existence of a sequence {z;};»; in X satisfying z; := x; and lim,_, o, 2; = Xo, and
of a sequence {z}};» satisfying z; € 9f (z;) for all i > 1, such that for n large enough

n

Z(Z?, i1 — ) =M.

i=1
Thus df cannot be strongly cyclically monotone at x,. O

Let us now show that Theorem 4 and Theorem 8 characterize different classes of
functions. This is illustrated in the following example.
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EXAMPLE. Consider the following proper Isc convex function f : R? — RU{+o00}
defined by

x2/x,— Jx ifx; > 0;
fx) =10 ifx;=x,=0;
+00 elsewhere.

It is easily seen that
dom of = {(x;,x;) € R? : x; > 0},
while
dom f = domadf U{(0, 0)}.

Clearly, the function f Jaomar is continuous. On the other hand, the function f |4om f
is discontinuous at (0, 0), as can be shown by considering the sequence (1/n3, 1/n)
which converges to (0, 0).

REMARK. The above example exhibits in particular the difference between Defini-
tion 3 and Definition 6 for xo € dom T \ dom T (compare also with Proposition 2).

4.3. Classification of the various concepts of cyclic monotonicity
We first give the following definitions.

DEFINITION 11. We say that
(1) of is locally bounded on dom f, if for every x, € dom f there exist M > 0 and
8 > 0 such that

(20) Vz € dom df N B(xo,68), ¥z* € of (2), "l < M.

(ii) 9f has a locally bounded selection on dom f, if for every x, € dom f there exist
M > 0and § > O such that

1) Vz € domdf N B(x,8), 3Iz*€df(z), |z*|l <M.

Let us observe that if f is the indicator function of any closed convex subset K
of X, then the operator df has a locally bounded selection on dom f, without being
locally bounded (unless K = X).

The following result is well known (see [6], for example).

THEOREM 12. f is continuous if and only if 3f is locally bounded on dom f .
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In the above case, it follows that dom f is open and dom f = domdf. Let us
remark that it is possible to have dom f 7 X. It suffices to consider the function
f R — RU {+o0} with

+o0 ifx <0

fx)= 1/x ifx > 0.

We now state the following sufficient condition for strong cyclic monotonicity.

PROPOSITION 13. If 3f has a locally bounded selection on dom f, then df is
strongly cyclically monotone on dom f .

PROOE. Let x, € dom f. In view of Theorem 8 it suffices to show that the function
f laoms is continuous at xo,. Since df has a locally bounded selection on dom f
and since dom 9f is dense in dom f, there exists § > O such that for every x €
dom f N B(xo, 8) we can find a sequence {x;}i») in dom 9f satisfying lim;_, o x; = X
and a sequence {x}};>, in X* satisfying x* € df (x;) and [Ix}|| < M forall i > 1.
Then (1) yields that

fx) < f (o) + (x], xi — xo).
Since f is Isc, we conclude as i — +00 that
(22) f(x) < f (xo) + Milxo — x|
Since (22) holds for all x € dom f N B(xo, 8), it follows that

Hm sup f |gomys (x) < f (o).

X—>Xq
Since f is Isc we conclude that f |gomy is continuous at xo. O

The converse of Proposition 13 is not true as it is shown by the following example.

EXAMPLE. Consider the function f : R = R U {400} with

——x ifx <0

FO=110  ifx>o0.

Then the restriction f |gom, is obviously continuous. On the other hand, df does not
have a locally bounded selection (take xo = 0).
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Thus, between the various concepts we have considered, the following implications
hold, and none other:

df locally bounded on dom f — f continuous
4
df locally bounded selection on dom f i/}
U
df strongly cyclically monotone on dom f &= f |smy coOntinuous
4 4
df o-cyclically monotone <= flims continuous
Acknowledgment

The research of the second author was supported by the TMR post-doctoral grant
ERBFMBI CT 983381.

(1]

(2]

(3]

(4]

(5]

(6]

(7]
(8]

References

D. Aussel, J.-N. Corvellec and M. Lassonde, ‘Mean value property and subdifferential criteria for
lower semicontinuous functions’, Trans. Amer. Math. Soc. 347 (1995), 4147-4161.

J. Borwein, W. Moors and Y. Shao, ‘Subgradient representation of muitifunctions’, J. Austral. Math.
Soc. (Series B) 40 (1998), 1-13.

R. Correa, A. Jofre and L. Thibault, ‘Characterization of lower semicontinuous convex functions’,
Proc. Amer. Math. Soc. 116 (1992), 67-72.

A. Daniilidis, ‘Subdifferentials of convex functions and sigma-cyclic monotonicity’, Bull. Austral.
Math. Soc. 61 (2000), 269-276.

A. Daniilidis and N. Hadjisavvas, ‘On the subdifferentials of quasiconvex and pseudoconvex func-
tions and cyclic monotonicity’, J. Math. Anal. Appl. 237 (1999), 30-42.

R. Phelps, Convex functions, monotone operators and differentiability, 2nd edition (Springer, Berlin,
1991).

R. T. Rockafellar, Convex analysis (Princeton University Press, Princeton NJ, 1970).

——, ‘On the maximal monotonicity of subdifferential mappings’, Pacific J. Math. 33 (1970),
209-216.

LACO, CNRS UPRES 6090 CNRS ERS 2055
Faculté des Sciences Laboratoire de Mathématiques Appliquées
Université de Limoges Université de Pau et des Pays de I’ Adour
123, avenue Albert Thomas avenue de 1’Université
87060 Limoges, Cedex 64000 Pau
France France

e-mail: joel.benoist@unilim.fr

e-mail: aris.daniilidis@univ-pau.fr






Article [3]

“A dual characterization of the Radon-Nikodym property”
Bull. Austral. Math. Soc. 62 (2000), 379-387.

M Bachir
A. Daniilidis






BuLL. AUSTRAL. MATH. SocC. 46822, 49150, 46820
VoL. 62 (2000) [379-387]

A DUAL CHARACTERISATION OF
THE RADON-NIKODYM PROPERTY

M. BACHIR AND A. DANIILIDIS

We prove that a Banach space X has the Radon-Nikodym property if, and only if,
every weak*-lower semicontinuous convex continuous function f of X* is Gateaux
differentiable at some point of its domain with derivative in the predual space X.

1. INTRODUCTION

Collier [5] has shown that a Banach space X has the Radon-Nikodym property if, and
only if, all weak*-lower semicontinuous convex continuous functions on the dual space
X* are generically Fréchet differentiable. (Such a dual space was called in [5] weak*-
Asplund.) In this article we give the following characterisation of the Radon-Nikodym
property in terms of Gateaux derivatives.

THEOREM 1. A Banach space X has the Radon-Nikodym property if, and only
if, every weak*-lower semicontinuous convex continuous function on X* is Gateaux dif-
ferentiable at some point of its domain with derivative in the predual space X.

Since Fréchet derivatives of weak*-lower semicontinuous convex continuous functions
of X* are always elements of X (see [7], for example), the improvement upon the afore-
mentioned result of Collier consists on replacing the Fréchet derivative by Gateaux and
on passing from a dense differentiability assumption to the existence of the derivative at
one point.

If X does not have the Radon-Nikodym property, then it is possible to have nowhere
Fréchet differentiable weak*-lower semicontinuous convex continuous functions on X* for
which the set of points where the Gateaux derivative exists and belongs to the predual
space is dense (see Proposition 8). Concurrently, it is also possible to have weak*-
lower semicontinuous convex continuous functions on X* that are generically Gateaux
differentiable with all derivatives in X** \ X. Indeed, consider the Banach space X =
co(N), its dual space X* = ¢!(N) and the function g(z) = ||z||;, see [10, Example 1.4 (b)]
for details.
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Let us finally note that characterisations of the Radon-Nikodym property for dual
Banach spaces in terms of the Gateaux derivative are recently established by Giles in (8,
Theorem 2].

The proof of Theorem 1 is given in Section 3, while in the following section we fix
our notation and we recall relevant definitions.

2. PRELIMINARIES

In the sequel, (X,||.|) will be a Banach space and (X*, ||.||) will be its dual. We
denote by By the closed unit ball of X and by R (respectively, N) the set of all real
(respectively, positive integer) numbers. For any z € X and any p € X* we denote by
(p, z) the value of the functional p at the point z. Similarly, for any 2** in X** we denote
by (p,2**) the value of z** at p. We also denote by TG F' the closed convex hull of the
set F. For any non-empty closed bounded subset F' of X we denote by 9r the indicator
function of F (yp(z) := 0, if z € F and +oo, if z ¢ F) and by 9} its Fenchel conjugate,
that is, for all p € X*

(1) Yp(p) = sup (p,z).
z€F

It is known that ¥} is a weak*-lower semicontinuous convex continuous function. (The
latter follows from the fact that the boundedness of F' yields dom ¢} = X*.) We also
recall that every weak*-lower semicontinuous convex continuous function g : X* - RU
{+0o0} coincides with the first conjugate f* of a lower semicontinuous convex function f
defined on X (take f := g*). We denote by domg := {p € X* : g(p) < +00} the domain
of the function g. Then, the Fenchel-Moreau subdifferential dg of g at any p; € dom g is
defined as follows:

(2) 8g(po) = {2*" € X™* : g(p) — g(po) > (p — po, 2"™*), VP € X"}

If pp € X* \ dom g, then we set dg(po) = 0.

Given a closed subset F of X and a point zo of F we say that x4 is a strongly
ezposed point of F, if there exists py € X* such that any sequence {,},>; in F satisfying
nEToo {po, z,) = 21611;3 (po, ) converges to zo in the norm topology. In such case we say

that the functional py strongly exposes zp in F. We denote by se (F') the set of strongly
exposed points of F.

We now introduce the notion of a weakly ezposed point, which will be useful in the
sequel, see Lemma 5.

DEFINITION 2. Let F be a closed subset of X. A point o € F is called a
weakly exposed point in F, if there exists py € X* such that any sequence {z,}n>, in F
with lim (pg,z,) = sup (pg,z) weakly converges to zo.

n—+o0o z€F
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In the case of the above definition we say that the functional p, weakly exposes xp in
F. 1t follows easily that po attains its unique maximum on F at xo, hence in particular
o is an extreme point of F. We denote by we (F) the set of weakly exposed points of
F. Furthermore, a point o is called a point of continuity of F, if the identity mapping
id : (F,Sy) = (F, Q) is continuous, where S, (respectively, 3j) denotes the relative
weak (respectively, norm) topology of F. It follows directly that zo is a strongly exposed
point of F if, and only if, it is both weakly exposed and a point of continuity of F'. Finally,
a point g is called weakly denting (or strongly extreme, according to the terminology in
(4, p.67]), if for any relatively weakly open subset W in F' containing zo there exist
p € X* and a > 0 such that the set {z € F : (p,z) > (p,Zo) — a} is included in W.

3. PROOF OF THE MAIN RESULT

The proof of Theorem 1 is based on the following result of Bourgain [3, Chapter 1;
Theorem 4]. (For a proof in English, see [4, Corollary 3.7.6].)

THEOREM 3. A Banach space X has the Radon-Nikodym property if, and only
if, every nonempty closed convex bounded subset F' of X has at least one weakly denting
point.

We can easily deduce the following corollary. The analogous result for dual Banach
spaces is given in [8, Theorem 4].

COROLLARY 4. For a Banach space X, the following are equivalent:

(i) X has the Radon-Nikodym property
(ii) Every closed convex bounded subset of X is the closed convex hull of its
weakly exposed points.
(iii) Every nonempty closed convex bounded subset of X has at least one weakly
exposed point.

PROOF: It is known ([4, Corollary 3.5.7], [10, Theorem 5.21], for example) that a
Banach space X has the Radon-Nikodym property if, and only if, every closed convex
bounded subset of X is the closed convex hull of its strongly exposed points. This shows
that (i)==(ii). Implication (ii)==(iii) is trivial, while (iii)==(i) follows from Theorem
3 and the observation that every weakly exposed point of F is weakly denting. 0

REMARK 1. A weakly denting point is not in general weakly exposed, even in finite
dimensions. Indeed, let X = R?, F = {(z1,22) : f(z1) < 72 < g(z1)}, where f(z) =
max{0,z3} and g(z) = z+ 1, and T = (0,0). Then 7 is a weakly denting point of the
compact convex set F, without being weakly exposed.

REMARK 2. A Banach space X has the Radon-Nikodym property if, and only if, for

every nonempty closed convex bounded subset F of X we have se (F') # 0. However, if
X does not have the Radon-Nikodym property, then the fact that we (F') # 0 (or even
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that €0 (we (F')) = F) for some closed convex bounded subset F' of X does not necessarily
imply that se(F") # 0. (Consider the subset F of co(N) defined by (12) in Proposition 8
and Claims 1 and 2 therein.)

We shall finally need the following lemma.

LEMMA 5. Let X be a Banach space and F be any non-empty closed convex
bounded subset X. Then the following are equivalent:
(i) The function ¢} is Gateaux differentiable at py with derivative 1o € X.
(ii) zo € F and the functional py is weakly exposing zo in F.

PROOF: (i)==(ii): Assume that (i) holds. Since zo = VY}(po) (Where VCyp,
denotes the Gateaux derivative of ¥}), we obviously have zo € 0¥} (po), that is for all
peX*

Yr(p) — ¥r(Po) 2 (P — Po, To)-
For p = 0 we obtain
(3) Yr(po) := sup (po, T) = (Po, Zo)-
z€F
Let now {Z,}n>1 be a sequence in F such that

(4) lim (po,-’En) = Sull):* (pﬁ’ 2:).
z€

n—+o00

It suffices to show that {xn}n>1 weakly converges to zo. (Then, since the weak and the
norm closure of the convex set F' coincide, it will also follow that z, € F.)

Let us assume, towards a contradiction, that there exists a subsequence {,, }x»1 of
{Za}nz1, h € X* and a > 0 such that forall k > 1

(5) (hyZn,) — (h,zo) > a.
Thanks to (3) and (4), we can consider ¢, \, 0% in a way that
(6) (Po,Zn) 2 (Po, To) — €n.
Since ¥}(p) 2 (p, ), using (3) we get

¥r(p) 2 ¥Yr(po) + (P, Zn) — (P, o),
which in view of (6) yields
(7) Yr(p) 2 Yr(po) + (P — Po, Tn) — €n.
Set t, = 2¢,/c. Then for p = py + t,h relation (7) yields

(w;«‘)(po + tnh) - (’l//';')(PO) 2 (tnhq .'II,.) —€&n




(5] The Radon-Nikodym property 383

for all n > 1. In view of (5) this implies

(1/)})([)0 + tnkh) - (1/);“)(?0) _ (h, 3:0) >

tn,

>0

R

for all k > 1. It follows that z, is not the Gateaux derivative of ¢} at pp, hence a
contradiction.
(ii)—(i): Suppose that po is weakly exposing zo in F, hence in particular (py, Zo) =

sup (po,z). It follows easily from (2) that zo € 0¢;(po). Let us now suppose that (i)
zeF
does not hold. Then there exist € > 0, h € X* with ||h|| <1 and ¢, N\, 0% such that

(8) (¥F)(Po + tah) — (¥F)(Po) > (tah, To) + €tn.

For every n > 1, choose z, in F such that

9) (Po + tah, Tn) > (VF)(Po + tah) — %

Since (¢¥5)(Po) 2 (Po, Tn), the above inequality yields

(o + ta ) — (o, 30) > (65 o+ 1) — (U3 ) — 2

Hence
* tn
(10) (tnh, xn) > (¥5)(Po + tah) — (V) (Po) — o
Combining (8) and (10) we conclude
(h,Zp — Zg) > € — 1
y4én 0 ny

which shows that {z,}.>1 does not weakly converge to zo. However, since the sequence
{2n}n>1 is bounded and the function ¢} is continuous, relation (9) yields lirjl (po, Zp) =
n—+00

(¥%)(po), obtaining thus a contradiction to Definition 2. 0

REMARK. The above proof was inspired from techniques developed in [2] where a con-
nection between well-posed problems and differentiability was established. Results in the
same spirit are algo established in [6, Section 1], via a different approach. We are grateful
to C. Zilinescu for bringing the aforementioned reference to our attention.

PROOF OF THEOREM 1: The “only if” part follows from the result of Collier [5] and
the fact that the Fréchet derivatives of weak*-lower semicontinuous convex continuous
functions on X* always belong to the predual space X (see (7], for example).

For the “if” part, let F be any closed convex bounded subset of X. Then the function
¥ of X* (given in (1)) is weak*-lower semicontinuous convex and continuous. From our
hypothesis and Lemma 5 we conclude that we (F) # 0. Since F is arbitrary, Corollary 4
asserts that X has the Radon-Nikodym property. 0
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Let us recall that a Banach space X is called weakly sequentially complete, if every
weakly Cauchy sequence of X is weakly converging in X. A typical example of a non-
reflexive weakly sequentially complete Banach space is the space L'(p), where p is a
o-finite positive measure. The following remark is due to Godefroy.

COROLLARY 6. Let X be a weakly sequentially complete Banach space. Then
X has the Radon-Nikodym property if, and only if, every weak*-lower semicontinuous
convex continuous function on X* is Gateaux differentiable at some point of its domain.

ProOF: The “only if” part is a direct consequence of Theorem 1. The “if” part
follows from the following observation: if F' is a nonempty closed convex bounded subset
of X, and if VO¢}5(p) is the Gateaux derivative of the function ¥ at p € X*, then
there exists {Z,}n31 in F that weakly*-converges to VG5 (p) (see the proof of Lemma
5 (i)==(ii)). It follows that {z,}.31 is a weakly Cauchy sequence, hence in view of our
hypothesis VE4%(p) € X. (For similar considerations, see also [9].) We conclude by
Lemma 5 (i)==(ii) and Corollary 4 (iii)==(i). 0

Lemma 5 has also the following consequence. (The proof below is similar to [10,
Theorem 5.20].)

COROLLARY 7. Let F be a closed convex bounded subset of X . If ;. is Gateaux
differentiable in a dense subset of X* with derivatives in X, then F = to (we (F)).

PROOF: Since F is bounded, we have dom (¢}) = X*. (In particular the function
¥} is convex and Lipschitz.) Since F is closed and convex, we have ¢o (we (F )) C F. Let
us suppose, towards a contradiction, that there exists some o in F \ €0 (we (F)). Then
by applying the Hahn-Banach theorem, we can find p € X* (p # 0) and a € R such that

sup{(p, z): z € co(we (F))} < a < {p,zo).

Set D = {qg € X*:3V°(yx)(q) € X}. Since D is dense in X*, we can find ¢ € D close
to p such that z := VE(y5)(g) € X and

(11) sup{(q,x) :xEE(we(F))} < a < {g,10).

By Lemma 5 we conclude that z € we (F') and that the functional ¢ weakly exposes z.
This clearly contradicts (11). 1]

The space cy(N) is a typical example of a Banach space without the Radon-Nikodym
property. In this case, as already mentioned in Section 1, the norm || - ||; provides an
example of a weak*-lower semicontinuous convex continuous function of ¢!(N), which is
generically Gateaux differentiable with all derivatives in X**\ X. In the following proposi-
tion we give an example of a (nowhere Fréchet differentiable) weak*-lower semicontinuous
convex continuous function of £!(N), which is Gateaux differentiable with derivatives in
the predual space in a dense set.
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PROPOSITION 8. Let X = co(N). Then there exists a weak*-lower semicontin-
uous convex continuous function f : X* — R such that:
(i) there exists a dense subset D of X* such that f is Gateaux differentiable
at every point of D with derivative in the predual space ;

(ii) f is nowhere Fréchet differentiable.

PROOF: Set X = ¢p(N) and consider the set
(12) F=Bxnci(N):={z=(2");: |lzllo <1 and z' >0 (Vie N)}.
It is easily seen that F is closed convex bounded and that
ext (F) = {z € F: z* € {0,1} for all 1}

where ext (F') denotes the set of the extreme points of F'.

CLAIM 1. Let T € ext (F) and consider the finite set
(13) Ir={ieN:T =1}.
Then any functional p = (p*); of X* := ¢!(N) satisfying

pi>0, 1fz€]i

14 ,
(14) p <0, ifie N\Iz

weakly exposes the point Z. In particular ext (F) = we (F)) (and hence we (F) # 0).

PROOF OF CLAIM 1: Let Z € ext (F), Iz = {i € N: 7" = 1} and consider any p in
¢'(N) satisfying (14). We first note that for all z € F' and all i € N we have

(15) P <P

It follows that (p,z) < (p,Z), for all z € F, that is, (p,Z) = sup (p,z). Take now any
zEF
sequence {Zn}n>1 in F such that HIP (p, zn) = (p,T). We show that
n o0
(16) lim z¢ =7
n——+oo

for all 4 > 0. Indeed, assume that for some 7y (16) does not hold. Then there exist a
subsequence {z¥ }i31 of {z¥}n>1, € > 0 and ko € N such that for all k > ko

€

ll':?k - Toi > W.

Using (15) we infer that

PP T,y < pPITO—e.
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Combining with (15) we get (p, Zn,) < (p,Z) —¢, for all k > ko. This contradicts the fact
that (p, z,) — (p,T). It follows that (16) holds for all ¢ > 0. Since the sequence {Zn}n31
is bounded, we conclude from (16) that z, — Z. Hence the functional p is weakly
exposing T in F. Since every weakly exposed point is obviously extreme, the proof of the

claim is complete. 0

CrLaM 2: se(F) = 0.

PROOF OF CLAIM 2: It clearly suffices to show that any point Z in we (F') is not a
point of continuity for F. To this end, take any T € we (F') and consider the sequence
{zp}nz1 in F with

T
" 0 elsewhere

) _{ 1 ifielzU{n}

where Iz is given by (13). Then it follows easily that z, -5 Z. On the other hand, for
n sufficiently large, we have ||z, — Z||o = 1. 0

Consider now the weak*-lower semicontinuous convex continuous function ¥y :
¢}(N) — R defined by

(17) Yr(p) = sup (p,z) = [Ip+Ilx
z€EF
where ||-||; is the usual norm of ¢!(N) and
; p ifpt>0
p+ = . 4
0 ifp*<0.
Let us denote by D the set of all functionals p = (p*); in ¢*(N) satisfying (14) for some
finite (possibly empty) subset I of N. For every such functional p, consider the point
T = (7%); of ¢p(N) defined by
[ 1 ifier
] 0 ifieN\L
Then T € F and I = Iz (where Ir is given in (13)). It follows by Claim 1 that the
functional p weakly exposes Z. Applying Lemma 5 (ii)— (i) we conclude that Z is the
Géateaux derivative of ¥} at p.

We now show that D is dense in ¢!(N). Indeed, take any ¢ = (¢*); in ¢}(N) and any
€ > 0. Then for some ng € N we have:

7o

i g
lalh <3 1¢'1+ 5.

=0
Consider now the functional p = (p'); defined by
¢ ifi<nyandqg #0
——— elsewhere.
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It is easily seen that p € D. Moreover,

+00 +o00 +o00 e
la—pli=>"ld' =P 1< Y11+ 5 <&

i=0 i>no i=0
We have shown that the function ¢} is densely Gateaux differentiable with derivatives
in the predual space X. On the other hand, since by Claim 2 the set F' has no strongly
exposed points, it follows from [1, p. 450] that ¢} is nowhere Fréchet differentiable.

Let us finally note that the function ¥} is in fact generically Gateaux differentiable.

Indeed, it is easily seen that for every p = (p*); with p* # 0 for all 4, we have VS4}.(p) =
2** where 2** € ¢*°(N) is given by

i 1 ifpt >0
(") = o
0 ifp'<0
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1. Introduction. By the term integration of a multivalued operator T : R? =
R?, we mean the problem of finding a lower semicontinuous (Isc) function f such that
T C Of, where Jf corresponds to some notion of subdifferential for the function f.
This problem has recently attracted researchers’ interest; see, for instance, [3], [5], [6],
[9], and references therein.

If we impose the further restriction that df is the Fenchel subdifferential (defined
below), then a complete answer (even in infinite dimensions) to the aforementioned
problem has been established by Rockafellar [7], with the introduction of the class
of cyclically monotone operators. Indeed, as shown in [7] (see also [4]), every such
operator T is included in the subdifferential 0f of an Isc convex function f. In
particular, T' coincides with Jf if and only if it is maximal, and in such a case f is
unique up to a constant.

In dealing with the above problem, Rockafellar used a technique consisting of
a formal construction of an lsc convex function fr started from a given cyclically
monotone operator 7. The function fr is further called the conver integral of T.
Let us recall that Fenchel subdifferentials are particular cases of cyclically monotone
operators. Consequently, for every Isc function f with dom df # 0, the convex integral
far (also denoted f in this paper) of its subdifferential 0f naturally defines an Isc

convex function minorizing f. If in particular f is convex, then the convex integral ]?
is equal to f up to a constant [7]. In the general case, a natural question arises:

(Q) Given an lsc function f, is fAequal to the closed convex hull €6 f of f7

This question was first considered in [1, Proposition 2.6], where the authors pro-
vided a positive answer (in finite dimensions) for the class of strongly coercive func-
tions, that is, functions satisfying

(1.1) T C)

llzl|—oo |||

In this paper we improve the above result by establishing the same conclusion
for the larger class of epi-pointed functions introduced in [2] (see definition below).
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Moreover, we shall give an easy example of a non-epi-pointed function for which (Q)
is no longer valid. However, for the one-dimensional case (d = 1), we shall show that
(Q) holds true for every lsc function defined on R.

The paper is organized as follows. In the next section, we fix our notation and give
some preliminaries concerning Fenchel duality and convex integration of the (Fenchel)
subdifferential of a nonconvex function. The result of [1] for the class of strongly
coercive functions is recalled, and an example where the convex integration does not
yield the closed convex hull of the function is illustrated. Finally, in section 3 we state
and prove the main result of this article, concerning the class of epi-pointed functions.

2. Convex integration. Throughout this paper we consider the Euclidean space
R? equipped with the usual scalar product {-,-). In what follows, we denote by
f:R* — RU{+oco} a Isc function which is proper, that is dom f := {z € R? :
f(z) € R} is nonempty. We also denote by epi f the epigraph of f, that is the set
{(z,t) e R4 x R : f(z) < t}. We recall that the second conjugate o f (also denoted
by f**) of f is given by

(2.1) o f(z) = sup, {{z*,z) — f*(2")},
where
(2.2) [r(@") = sup {(z",2) = f(z)}.

It is known that ©o f is the greatest lsc convex function majorized by f, and that
its epigraph coincides with the closed convex hull of the epigraph of f. By the term
subdifferential we shall always mean the Fenchel subdifferential df, defined for every
x € dom f as follows

(2.3) Of(x) ={z* €eR?: f(y) > f(z) + («*,y —z) Vy e R}
If z € R?\ dom f, we set df(z) = (). Throughout this paper, the set
dom Of == {x e R : f (x) # 0}

is assumed to be nonempty. Further, let 2o denote an arbitrary point of domdf. We
call convex integral of f the Isc convex function f : RY — RU {+oc} defined for all
x € R? by the formula

(2.4) f(x) = f(xo) + sup {Z@f,wiﬂ —z;) + (x),r— xn>} ,

=0

where the supremum is taken for all n > 1, all x1,22,...,%, in domdf, and all
xy € 0f(xg), 25 € Of(x1),...,xk € Of(xy). According to (2.3), we can easily check
that f < f, and consequently f is proper and

(2.5) f<@f

Rockafellar [8] has shown that if f is in particular convex, then the convex integral f
of Of is equal to f, that is

(2.6) f=rt
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In [1, Proposition 2.6] the authors generalized (2.6) to the nonconvex case by showing
that if f is strongly coercive (that is f satisfies (1.1)), then (2.5) becomes

~

f=c/f

However, the exact relation between fand co f for a function not satisfying (1.1)
remains to be discovered. In particular, while in one-dimensional spaces we always
have f = co f (see Corollary 3.7), the following simple counterexample shows that
this is not the case in general.

Ezample 2.1. Let f : R?> — R be defined as follows:

[ exp(—a?) + 1% if (a,b) # (0,
ﬂm@—{ ’ 0 7 if(ab) = (0

We can easily check that

172 : —
f*(a,b):{ 5b if a =0,

+oo ifa#0
and that

_ 1.4

co f(a,b) = ib .

On the other hand, since

W@@—{@ if (a,b) # (0,0)

formula (2.4) yields (for zo = (0,0)) that f(z) = 0 for all z € R2. Hence f # o f.
Remark. Appropriately modifying the function f around the origin, we can obtain
a continuous function g : R? — R such that § # cog.
Let us also remark that in the previous example we have

(2.7) int (dom f*) = 0.

It will follow from the main theorem of section 3 that (2.7) is in fact a necessary
condition for obtaining such examples.

3. Epi-pointed functions. The aim of this section is to establish the equality
between the convex integral f of df and the closed convex hull @6 f of f for the class
of proper, lsc, and epi-pointed functions defined in R¢.

Let us recall the following definition [2].

DEFINITION 3.1. The function f is called epi-pointed if int (dom f*) # ().

It follows easily (see [2, Proposition 4.5 (iv)]) that every strongly coercive function
is epi-pointed. Note also that for every Z* € int (dom f*) we can always find 7 € R?
such that f*(z*) = (z*,7) — f(T) (that is the “sup” in (2.2) is attained). This
obviously yields that T8 € 9f(x) Nint (dom f*). In particular, if f is epi-pointed the
set dom Jf is nonempty. If now x( is any point of dom df, we can consider the lsc
convex function f defined for all z € R% by

(3.1) f(x) = f(x0) + sup {i(ﬂﬁj,xwl —x;) + (@, x — IUn)} ,

=0
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where the supremum is taken for all n > 1, all ¥y, 29, ..., 2, in R? all 23 € df(xo),
and all

x; € Of (x;) Nint (dom f*),
where i € {1,...,n}. Note that whenever f is epi-pointed, the set
{z € RY: 9f(x) Nint (dom f*) # 0}

is nonempty, so that f is proper. Comparing formulas (2.4) and (3.1) we immediately
conclude that

fF<r
We shall show that if the function f is convex and epi-pointed, then f is equal to
f and so, in view of (2.6), the previous inequality becomes an equality. This is the
context of Proposition 3.3 below.
We shall first need the following lemma.

LEMMA 3.2. Suppose that f is lsc convex and epi-pointed. Then we have the
inclusion

Af*(z*) Caf*(z*) on int (dom f*).

Proof. A classic result (see [8]) states that for the lsc convex function f and all
x,z* € R? we have

x € 0f*(x*) if and only if z* € 9f(x).
Similarly, for the Isc convex function f,
zedf(z*) ifandonlyif 2* € df(x).

Let 2* € int (dom f*) and & € df*(z*). We shall show that = € df*(z*). It follows
that

(3.2) x* € 0f (x) Nint (dom f*).

For any t < f(z), using formula (3.1), we may choose 1, ...,z, in R%, % € df(x0),
and z3 € df(x1) Nint (dom f*),...,z% € f(x,) Nint (dom f*) such that

n—1

(3.3) t < f(xo) + Z(a:;‘,xi_H —x) + (z),x — ).
i=0

For any y € R%, adding to both sides of (3.3) the quantity (z*,y — z), we obtain

n—1

(34) (e y—a) < flzo) + (2} wivr — zi) + (2l x —@a) + (2%, — ).
i=0

In view of (3.1), the right part of (3.4) is always less than or equal to f(y). Letting
t — f(x), we infer

f@) + (@ y—z) < f(y),
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which yields z* € 8f(x), or, equivalently, z € df*(2*). |

ProposiTION 3.3. If f is Isc conver and epi-pointed, then f: f.

Proof. Since the functions f* and f* are proper, lsc, and convex, we deduce from
[8] and Lemma 3.2 that

(3.5) f*=f*+k on int(dom f*)

for some constant k € R.

Let us now prove that the equality in (3.5) can be extended to all R%. According
to [7, Corollary 7.3.4], it suffices to prove that the relative interiors of the convex sets
dom f* and dom f* are equal or, equivalently (since int (dom f*) is nonempty), that

(3.6) int (dom f*) = int (dom f*).

Let us now prove this last equality. Taking conjugates in both sides of the inequality
f < f we obtain f* < f*; hence in particular

dom f* C dom f*,
and so
(3.7 int (dom f*) C int (dom f*).

Conversely, let z* € int (dom f*). Since f* is convex, we have df*(z*) # 0. By
Lemma 3.2 we get Of*(z*) # (), yielding that z* € dom df*. It follows that

(3.8) int (dom f*) C dom f*.

Combining (3.7) with (3.8), we conclude that equality (3.6) holds as desired. Hence
we obtain

fF=r+k
Taking conjugates, this last equality yields f = f — k. Since flzo) = f(xo), we
conclude that k = 0 and thus f = f. O
We shall finally need the following lemma.
LEMMA 3.4. Suppose that f is lsc and epi-pointed, and set g = ¢o f. Then for
any © € domdf and x* € dg(z) Nint (dom f*) there exist y1,...,y, in R? such that

x € co{yi,y2,...,Yp} and

bAlS ﬂ of (yi)-

i=1

Proof. From [2, Theorem 4.6] we conclude that for any z* € Jg(z) there exist
Y1, Yp i R and wy, ..., w, in R\ {0} such that

q
x—ij € co{y,y2,---,Yp}
j=1

(3.9) z* € lﬂ af(yi)] a [ N afoo<wj>] :

i=1 j=1
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where fo is defined via the relation epi(fs) = (epi f)oo, Where

(epi foo := {d € X : Haptnu>1in epi f, Ht,} \ 0T with d = lirf tnxn} )
- n—--+oo

It suffices to show that for 2* € int (dom f*), (3.9) yields ¢ = 0. In order to find
a contradiction, suppose that ¢ # 0. Since the function f., is sublinear positively
homogeneous and fo(0) = 0 (e.g., [2]), it follows easily that for any w; # 0 and any
x* € Ofo(wj) we have (x*,w;) = foo(w,). Since x* € int (dom f*), we may find some
z* € RY (near x*) such that 2* € int (dom f*) and (z*,w;) > foo(w;). The latter
yields easily that

(3.10) 2 ¢ 9fa0(0).

On the other hand, since z* € int(dom f*) C dom df*, we conclude the existence of
x in R? such that = € 9f*(z*), or, equivalently,

(3.11) 2" € 0g(z).

Since dg(x) C 0fx(0) [2, Theorem 4.6], relations (3.10) and (3.11) give the contra-
diction. O

We are now ready to establish the main result of this section.

THEOREM 3.5. If f is lsc and epi-pointed, then f =¢o f.

Proof. Set g = ¢o(f). Then g is Isc convex and int (dom ¢*) = int (dom f*). In
particular, g is epi-pointed. Using Proposition 3.3 we conclude that

g9(z) = g(x0) + sup {i@?vxiﬂ —x;) + (wn, @ — $n>} .
=0

where the supremum is taken over all n > 1, all x1, ..., 7, in R, all f € dg(zo), and
all

x; € dg(x;) Nint (dom f*),

where i € {1,...,n}. Take any z € R? and any ¢ < g(). Then there exist x1,...,2,
in RY, 23 € 0g(zo), and ¥ € dg(x;) Nint (dom f*) (for i = 1 to n) such that

n—1

(3.12) t<glwo)+ > (2}, wip1 —2i) + (2,2 — z).
=0

Recalling that zo € domdf, we easily check that g(zg) = f(xo) and dg(xg) =
Of(xo). On the other hand, for all i € {1,...,n} Lemma 3.4 guarantees the existence
of points y},...,y? in R? such that z; € co{y},v?,...,y""} and

x; € ﬁ of (yf)
j=1

We claim that, for i = 1, there exists an index j; in {1,2,... ,p;} such that

(x5, 21 — mo) + (2], w2 — 21) < (&f, ¥l — wo) + (2], 22 — yI*).
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Indeed, if this were not the case, then for every j we would have
(@h, w1 — xo) + (2}, w2 — 1) > (w5, 4] — w0) + (27, 22 — ).

This yields a contradiction, since 21 € co {y},..., ¥4 }.
Proceeding like this for ¢ > 1, we inductively replace all z;’s in (3.12) by y/*’s in
a way that o} € df(y!*), thus obtaining the formula

t < f(xo) + (xh, yl* —xo) + (xf, 422 —yi*) + -+ (x}, 2 — ylr).

Comparing with (2.4), we obtain ¢ < f(z). Letting t — g(z) we infer g(z) =
@0 f(x) < f(x), which finishes the proof in view of (2.5). d

COROLLARY 3.6. Suppose that f, h are proper lsc and epi-pointed functions. If
Of = Oh, then €6 f and coh are equal up to a constant. L

Proof. For xp € domdf and ¢ = g(xg) — f(zg) we obviously have f = h + ¢,
which, in view of Theorem 3.5, yields ¢o f =Toh + c. d

The class of proper, Isc, and epi-pointed functions is not minimal, in order to
ensure the conclusion of Theorem 3.5. For example, every constant function f satisfies
f =7cof = f, and obviously dom f* = {0}. (In fact, one can consider any lsc
convex function f which is not epi-pointed.) Furthermore, the example of the function
f(x) = min{||z||,1} shows that the conclusion f = ©o f might be true even in cases
where f is nonconvex and non-epi-pointed at the same time. In particular, in one-
dimensional spaces the following result is true.

COROLLARY 3.7. Ifd =1 (that is f : R — RU {+o0}) and domdf # (), then
f=cf.

Proof. In view of Theorem 3.5, it suffices to consider only the case int (dom f*) =
(). Since f* is convex (and dom df # @) it follows that dom f* = {«} for some o € R.
We easily conclude from (2.1) that

(3.13) co f(z) = ax — f*(a)

for all z € R. On the other hand, for any zy € dom df we have 0f(zo) = {a}, which
yields, in view of (2.2) and (2.3), that

(3.14) () = azg — f(z0).

Finally, it follows easily from relation (2.4) that

~

(3.15) f(z) = fzo) + oz — o).

Relations (3.13), (3.14), and (3.15) directly yield f=df. |
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1. Introduction

If X is a Banach space, would you say that two lower semicontinuous (in short lsc) convex
functions g',¢* : X — R U {400}, equal on a dense subset of their domain, necessarily
coincide? In other words, can we determine a Isc convex function if we know its values on
a dense set? In Proposition 3.4, we show that in infinite dimensions the answer is negative
even if it is assumed that ¢' < g* and that both functions are positively homogeneous.
Motivated by these considerations, we introduce the class G;(X) of Isc convex functions
g that do not admit any non trivial Isc majorant f coinciding with g on a dense subset of
dom g. We show that G;(R?) coincides with the set of Isc convex functions (see Corollary
3.7). This is not the case in infinite dimensions, since - as we prove in Theorem 3.8 - a
Isc convex function with a dense domain belongs to the class G1(X) if, and only if, its
domain is equal to X.

We also investigate the relation between Fenchel subdifferential and convexity by focusing
on the following question: given a Isc function f : X — RU {400}, can we conclude that
f is necessarily convex whenever the domain of the Fenchel subdifferential of f is dense in
X7 This assertion is true in finite dimensions but fails impressively as soon as we consider
infinite dimensional spaces (see Proposition 4.3). An interesting relevant question is the
following. Given a Isc convex function g and a lsc function f such that the domain of the
Fenchel] subdifferential of f is dense in the domain of g and such that the closed convex

*The research of the second author was supported by the TMR post-doctoral grant ERBFMBI CT
983381.
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envelope of f is equal to g, can we conclude that f = g? If G, (X)) denotes the class of Isc
convex functions g for which the latter conclusion is true for all [, we show in Proposition
4.5 that G(X) strictly contains G, (X). Finally we obtain the analogue of Theorem 3.8 for
the class Go(X). More precisely, we show in Theorem 4.8 that a lsc convex and positively
homogeneous function with a dense domain belongs to the class G2(X) if, and only if, its
domain is equal to X.

2. Preliminaries

In the sequel, let N denote the set of strictly positive integers, X a Banach space and X* its
L dual. For any z € X and p € X* we denote by (p, z) the value of pat z. Given a function (E

SREEEE f: X = RU{+oo}, we denote by dom f = {z € X : f(z) € R} its domain. Throughout

\ this article, we shall deal with proper (i.e. dom f is nonempty) and lsc functions. Let us

L recall that the Fenchel subdifferential df of any such function f at the point z € dom f
B is defined as follows
0f() ={pe X*: f() - f(z) 2 (p,y - 7), ¥y € X}. Q)

, If z ¢ dom f, we set 8f(x) = 0. We denote by domdf = {r € X : 0f(z) # 0} the
L domain of the subdifferential of f. We recall that whenever f is convex, dom 8f is dense
in dom f. In fact, the following result holds (see for example (5, Theorem 3.17)).

- Proposition 2.1. Let f: X — RU {400} be a proper lsc conver function. Then dom of
‘ is f-graphically dense in dom f, that is, for every z € dom [, there ezists a sequence {2"}
in dom&f converging to x such that the sequence {f (z™)} converges to f(x).

Let us further recall that the closed convex hull of the function f, denoted @0 f, is defined
as the greatest Isc convex function majorized by f. It is well known that its epigraph
coincides with the closed convex hull of the epigraph of f. Let us remark that &5 f takes its
values in RU {400} if, and only if, there exists an affine continuous function minimizing f
on X. It is known (see [4] for example) that for a proper lsc function f:X = RU {40}
one has f = %5 f on domdf. This fact can be seen in the following simple way. Fix
r € domdf, take any p € 8f(z) and consider the function g=p+ (f(z) - (p,x)). It
follows from (1) that f > g. Since g is lsc convex, we get that f > @ f > ¢. The result
follows from the observation that f(z) = g(z).

3. Uniquely determined majorants of convex functions >

In this section we are interested in the question of determination of a convex function, by -
means of an information for its values on a dense set. :

=g

A relevant, but more specific question is the following. Let g : X — R U {400} be a
proper Isc convex function. If f is Isc and D is a dense subset of dom g then '

f2g

f=gonD

= f=g97? (2)

Let us first tackle (2) for the special case where D = dom ag.
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Lemma 3.1. Let g: X —» RU{+00} be a proper Isc convez function. Then for every lsc
function f satisfying f > g we have

f Idom&g =g ldomag == f =g.

Proof. Since f > g, it clearly suffices to show that f coincides with g on domg. By
Proposition 2.1, for every z € dom g, there exists a sequence {z"} in dom dg converging to
z such that the sequence {g(z™)} converges to g(z). By our hypothesis, f(z") = g(z") for
all n. Since f is Isc at z, letting n — +o0 this last equality yields f(z) < g(z). Recalling
that f > g, we conclude that f(z) = g(z). ' O

We now have the following proposition.

Proposition 3.2. Let g : X — RU {+o0} be a proper Isc convez function and let D be
a subset of dom g which is g-graphically dense in dom 8g (that is, any point in domdg is
the g-graphical limit of a sequence in D). Then for every lsc function f satisfying f > g
we have

flo=glb=f=y.

Proof. In view of Lemma 3.1, it suffices to show that f coincides with g on dom dg. Let
any z € domdg. Then there exists a sequence {z"} in D converging to z with {g(z")}
converging to g(x). Then f(z*) = g(z™) for all n > 1, and letting n — 400 we obtain
f(x) < g(z), since f is Isc at z. Recalling that f > g, we conclude that f(z) = g(z). O

The following corollary is a direct consequence of Proposition 3.2.

Corollary 3.3. Let g: X — RU{+00} be a proper lsc convez function such that g |domag
is continuous and let D be a dense subset of domdg. Then for every lsc function f
satisfying f > g we have

flo=glp=f=g

Remark.

1. As observed by the referee, the assumptions of Lemma 3.1 (as well as those of Propo-
sition 3.2 and Corollary 3.3) yield dg(z) C 0f(x), for all z € X. Thanks to the convexity
of g, this inclusion still holds even if 3 is remplaced by any abstract subdifferential in the
sense of [8, page 35], which relates directly to results concerning integration of subdif-
ferentials (see [6], [8], [9], [3] and references therein, as well as {7, Theorem 24.9] for the
convex case).

2. The assumption “g |4oma, is continuous” adapted in Corollary 3.3 is strictly weaker
than the relative continuity of g on domg. We refer to [2] for further details and a dual
characterization of this property.

The above results establish positive answers for the assertion (2) provided that the dense
set D satisfies certain conditions. The following proposition shows that without these
conditions, assertion (2) may fail even if both functions ¢! and g? are convex and positively
homogeneous. As usual, £2(N) denotes the Hilbert space of square summable sequences
and {e'} the canonical basis.

Proposition 3.4. There exist two distinct positively homogeneous Isc conver functions
g', g% : (N) - RU{+0o0} such that g' < g* and g' = g* < +00 on an open dense subset

of £3(N).
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Proof. Consider the functions g', g° : £2(N) — RU{+o00} defined for any z = (z;) € ¢2(N)
as follows:

y‘(x)=§gll>{ilxil} and  ¢*(z) = max { 2|z|, g'(z) }.

It follows directly that both functions are Isc convex and positively homogeneous and that
g' < g* Let us also note that g'(e') # g*(e') and consequently g' # g2. Moreover, it is
easily seen that g' = g2 < 400 on the subset

D={()€N): JHieN|zn|< |l

Since D is an opén dense subset of £2(N), the assertion is established. O

In the sequel we consider the question (2) globally, in the sense that we are interested
to Isc convex functions g for which the assertion holds true simultaneously for all dense
subsets D of dom g. This class is introduced in- the following definition.

Definition 3.5. We say that a proper Isc convex function g : X — R U {400} belongs
to the class G, (X), if g does not admit any non trivial Isc majorant that coincides with g
on a dense set of dom g.

Proposition 3.2 guarantees that G;(X) contains all convex continuous functions on X. The
following result shows that, more generally, G,(X) contains also all Isc convex functions
g with int dom g # 0.

Proposition 3.6. If g : X — R U {400} is a proper Isc conver function satisfying
int dom g # 0, then g € G1(X).

Proof. Let f be a Isc majorant of g such that f = g on a dense subset D of dom g. Let
D, = DNintdom 8g. Thanks to the continuity of g on int dom g it is easily seen that D,
is g-graphically dense in dom dg, whence f = g, in view of Proposition 3.2. d

Taking the relative interior, one gets the following corollary.

Corollary 3.7. G(R%) coincides with the class of all proper lsc convez functions.

The following theorem gives information on G;(X) in the infinite dimensional case.

Theorem 3.8. Let g : X — R U {+00} be a proper Isc conver function with a dense
domain. Then g € G1(X) if, and only if, domg = X.

Proof. Suppose that dom g # X. Since dom g is convex and dense in X, it follows easily
that intdomg = @. Hence g takes at least one infinite value in every neighborhood of
each point of X. Since the function g is Isc at every z in X, we conclude that for every
integer n the set

D, = {z € domg: g(z) > n}

is dense in X. Let us now take n > infg and consider the lsc function f: X — RU {+00}
defined by

f(z) = max{g(z),n}.

L~
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It is easily seen that f violates (2), i.e. f > g, f = g on the dense set D, and f # g.
Hence g ¢ G1(X), which proves the “necessity” part. The “sufficiency” part is a direct
consequence of Proposition 3.6, since dom g = X implies that domdg = X. a

4. Fenchel subdifferential and convexity

In this section we investigate the relation between Fenchel subdifferential and convex-
ity. The central question in this section is whether the non-emptiness of the Fenchel
subdifferential of a lsc function f on a dense set guarantees the convexity of f.

Let f : X — R U {+o0o} be a proper lsc function. If we assume that f is convex, then
Proposition 2.1 asserts that domdf is dense in dom f. Let us observe that the converse
assertion is not true even if X = R as shows the example below:

0 ifr=0o0r I,
flz) =

400 elsewhere.

Indeed, the function f is obviously lsc, non-convex and dom f = domdf = {0,1}.

However, assuming that dom f is convex, the following proposition ensures the converse
in finite dimensions.

Proposition 4.1. Let f : R — RU{+00} be a proper Isc function with a convez domain.
Then f is convez if, and only if, domdf is dense in dom f.

Proof. The “necessity” part follows from Proposition 2.1. For the “sufficiency” part,
assume that f is Isc and that D = domdf is dense in dom f. Setting g = Tof we
obviously have that g is Isc convex, f > g and f |p= ¢ |p. Since dom f is convex, it
follows that dom f (and subsequently also domdf) is dense in domg. This finishes the
proof in view of Corollary 3.7. a

In case where the Isc function f has a dense domain in X, the converse assertion becomes:
if domdf is dense in X, is f convex ? (3)

This question was first considered in [1] where the following positive result was established
(see [1, Section 3)).

Propesition 4.2. Let f be a lsc function such that domdf is dense in X. Suppose that
at least one of the conditions (a), (b) or (c) is satisfied:

(a) X=R%

(b) domf=X;

(c) Of has a locally bounded selection on domaf, i.e., for every x € X there exist
M >0 and r > 0 such that for all y € dom Jf,

ly—zl| <r = Ipcdf(y):|pl <M.

Then f is a convez continuous function.

The following proposition completes the above results by exhibiting an example showing
that, in infinite dimensions, (3) is not true without additional assumptions. Let us note
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that in the forthcoming example the domain of the constructed nonconvex function f is
convex as was the case in Proposition 4.1.

Proposition 4.3. In the Banach space X = £%(N), there exists a proper lsc non-convezr
function with a dense domain of Fenchel subdifferential.

Proof. Let us consider the functions g, f : £2(N) — RU{+00} defined for z = (z;) € £*(N)
by
9(z) = S:E’ {ilz:|} and f(z)= max{X(—l,l)(xl)> g(x)},

where x(-11y(z1) = 0 if z; € (=1,1), and x(-1,n(z1) = 1 if not. The functions f,g

are clearly lsc and g is convex. Considering the restriction of f to the one-dimensional
subspace Re! we deduce that f is not convex. Set

U ={(z:) € &(N): J e N, |z| > %}.

We obviously have
f>2920 and flv=glv. (4)

Let us remark that the domain of g contains the subspace of almost everywhere null

sequences, thus it is dense in £2(N). Since g is a Isc convex function, it follows that dom dg
is dense in dom g, and consequently also in #2(N). On the other hand, we conclude from

(4) that dom g N U C dom 8f NU. Since U is open and dense, it follows that dom af -

is dense in X. O

Motivated by the above example, let us consider the following general problem. Given a
Isc convex function g : X — RU {400} and a lIsc function f : X — RU {+oo0}, is it true
that
cof=g
= f=g7 (5)
dom df dense in dom g

Analogously to Definition 3.5, we introduce the following class of lsc convex functions.

Definition 4.4. We say that a Isc convex function g : X — RU {+o00} belongs to the
class Go(X), if g does not admit any non trivial Isc f such that 20 f = g and dom af is
dense in domg.

It is easily seen that assertion (5) is related with (2). In particular, if g € Gi1(X), then
obviously (5) holds and g € Go(X). Hence, for any Banach space X, we have

Gi1(X) C Ga(X). . (6)

In finite dimensions, in view of Corollary 3.7, G1(X) = G2(X) and both classes coincide
with the class of all proper Isc convex functions. The following proposition shows that
inclusion (6) can be strict in infinite dimensions.

Proposition 4.5. Consider the lsc conver function g : 2(N) — RU {+o0o} defined for
every T = (z;) € 2(N) by
+00

glz) =Y =l

=1

& TS

L et




U

o

~s
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Then g € Go(X), but g ¢ Gi(X). More precisely, for every lsc function f : £2(N) —
R U {+00}, the following implication is satisfied

of=9g=f=9
Proof. Let us observe that
+oc0
9(@) = oz, (7)
i=1
where the function ¢ : R — R defined for all t € R by ¢(t) = | t|>/2 is convex, differentiable
on R and twice continuously differentiable on R\ {0} with ¢"(t) > 0, for all ¢t # 0. Clearly

the function g is Isc and convex. Since ¢(0) = 0, the domain of g contains the subspace
of almost everywhere null sequences, thus it is dense in £2(N). Considering the sequence

z = ( o/ (3)? oy e conclude that dom g # ¢2(N). Hence according to Theorem 3.8 we

have g ¢ G1(X).

Let us now prove that g € G5(X). To this end, let f : £2(N) - RU {+oo} be a Isc
function satisfying ¢of = g (the other assumption in (5) that dom 8f is dense in dom g
will be superfluous in the sequel). By Lemma 3.1, in order to show that f = g it suffices
to ensure that f |dom3g =g ldomag .

Let us show that for every x € domdg and p = (p;) € dg(z), there exists m > 0 such
that for all u € X with ||u]| < 1 we have
9z +u) 2 g(z) + (p,u) + m JJul*. (8)
Indeed, let us fix z € dom dg and p = (p;) € dg(z). Applying (1) for y = z + te' (where
t € R and {e'} is the canonical basis), we have p(z; +t) > ¢(x;) + pit. This inequality
shows that p; € dp(z;). Since ¢ is convex and differentiable we conclude that
pi = ¢'(z:). (9)

Choose m = 3min {¢"(t) : |t| < |zl +1, t+# 0}; obviously m > 0. Consider now any
u = (u;) € #(N) with ||u]] < 1. Then for all i > 1 a direct calculation gives

Titug
(@ + 1) = p(:) + wg () + / (22 + s — )" (2) dt, (10)

-3
where the above integral is defined as the sum of the generalized integrals ‘;linl [ (zitu—t)
-0

Ti
Titu;
©"(t) dt and alir(% I (zi+ui—t) ¢"(t) dt in case that z; < 0 < x; +u; (and analogously,
—=0* 3

if 2, + u; <0 < z;). (Note that if z;(2; + w;) > 0, then (10) is nothing but the Taylbr’s
integration formula for the twice differentiable function ¢ on the segment [z;,z; + U]
(respectively on [z; + u;, x], if u; < 0)).
Let us remark that for all 7 > 1

Titui Ti+ui

/ (@i +u; — t)"(t) dt > 2m / (it ui—t)dt =mul.

Zi Z;




266 J . Benoist, A. Daniilidis / Coincidence Theorems for Convez Functions
Combining with (10) we obtain
(@i +w) 2 (i) + uigp'(2:) + m uf. | (11)
Adding the above inequalities for all ¢ and recalling (7) and (9), we obtain
9(z +u) 2 g(2) + (p,w) + m ||ull.

Hence (8) holds and the proof finishes in view of the following lemma.

Lemma 4.6. Let g be a proper lsc convez function on X and x € X. Suppose that there
eristp € X*, v > 0 and m > 0 such that for allu € X with |u|| <1 we have

gz +u) 2 g(z) + (p,u) + m [luf". (12)
Then, for every lsc function f such that f > g, the following implication is satisfied:
f(@)>g(z) = Tof #9. (13)
Proof. Let us set

G(u) =gz +u) —g(z) - (p,u) and F(u)=f(z+u)-g(z) - (pu).

Thus G is a lsc convex function with G(0) = 0, F is a Isc function with F(0) > 0 and
F > G. Moreover, relation (12) becomes:

m ful” < G(w), (14)

for all w € X with |u|| < 1. To prove the assertion of the lemma, it suffices to show that
©oF # G. Let us remark that if x € X with ||z|| > 1, we have

x 1 1 1
G (m) < 16(@) + (1 - TGO) = 7r6()

since G is convex. This shows, in view of (14), that for all ||z|| > 1

ml|z| < G(z). (15)

Let us now prove that there exists a > 0 such that F > a. Indeed, if this were not the
case, there would exist a sequence {z"} in X such that for alln > 1

1
Fa™) < - - (16)

Since G(z") < F(z™) we conclude thanks to (15) that for n large enough ||z"|] < 1. Thus
(14) yields m||z™||" < 2. It follows that the sequence {z"} converges to 0. Letting n — oo
n (16), and using the fact that F is Isc we conclude that F(0) < 0. This contradiction
shows that what asserted is true.

Thus F > a, which implies that ¢6F > a. Consequently ¢0F and G cannot coincide at 0.
This finishes the proof. O

I Clhad any
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Remark 4.7. It is easily seen that, more generally, the Isc convex function g : £2(N) —»
+00

R U {+00} defined for all z = (z;) € £2(N) by g(z) = ¥ |z: [P (1 <p < 2) satisfies the
i=1

conclusion of Proposition 4.5.

The following result, analogous to Theorem 3.8, deals with the case of Isc positively
homogeneous convex functions g with dense domain.

Theorem 4.8. Let g : X — R U {+o0} be a proper Isc positively homogeneous convez
function with a dense domain. Then g € Go(X) #f, and only if, domg = X.

Proof. Suppose that dom g # X and let us prove that g ¢ G2(X). For that, let us
consider the function f: X — RU {+oco} defined by

max {g(z),1} if g(x) > 0;
f(z) =
9(z) if g(z) < 0.

It is directly seen that f > g, which implies Zof > g since g is convex, and that for all
zeX ‘
f(z) =g(z) &=z € D,

where D={zr € X :g(z) ¢ (0,1)}.

Let us show that ¢of = g. This equality holds clearly on D. Let us now consider any

z ¢ D and let us set ! = 5(%52:, z?2 = 0 and A = g(z) € (0,1). Since g is positively

homogeneous, g(z') = 1 and g(z?) = 0 which implies that both points «! and z? belong
to B. Thus cof(z*) = g(z*) for i = 1,2. Since the functions g and Z5f are convex, and
since z = Az! + (1 — A)z? we deduce

B (5) < ADBF(a') + (1 = NEof(@?) = Agle") + (1 — Ng(z?) = g(a).
It follows that €of(z) = g(z).

Let us show that f is Isc. Since g is Isc, f > g and f |p = g |p, the function f is
obviously Isc at every point of D. Let now any ¢ D and let {z"} be a sequence in X
converging to z. Since g is lsc at z and g(z) > 0, we have g(2") > 0 for n large enough,
and consequently f(z") = max{g(z™),1} > 1 = f(z). This shows that f is Isc at .

Let us show that dom&f is dense in dom g. To this end, let us consider any z € domg.
Since g takes arbitrarily large finite values around z (see the proof of Theorem 3.8), there
exists a sequence {z"} in domg such that g(z") > 2 and ||z" — z|| < Lforall n > 1.
Using Proposition 2.1, we obtain a sequence {y"} in domdg such that g(y*) > 2 and
z® — 4| < L for all n. Since f > g and f(y*) = g(y") for all n, by definition of the
Fenchel subdifferential we have 8g(y™) C 0f(y") for all n. It follows that the sequence
{y"} is included in dom 8. Since the sequence {y"} converges to z, it follows that domdf
is dense in dom g.

Since g is positively homogeneous and takes finite arbitrarily large (hence in particular
positive) values, it follows that D # X, whence f # g. Thus g ¢ G5(X), which proves the
“necessity” part.

The “sufficiency” part is a direct consequence of Theorem 3.8 and inclusion (6). - O
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Remark 4.9. The example of the function given in Proposition 4.5 shows that the as-
sumption “g is positively homogeneous” is indispensable in Theorem 4.8.
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Characterization of Nonsmooth Semistrictly
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Communicated by S. Schaible

Abstract. New concepts of semistrict quasimonotonicity and strict
quasimonotonicity for multivalued maps are introduced. It is shown
that a locally Lipschitz map is (semi)strictly quasiconvex if and only if
its Clarke subdifferential is (semi)strictly quasimonotone. Finally, an
existence result for the corresponding variational inequality problem is
obtained.

Key Words. Subdifferentials, semistrictly quasiconvex functions,
strictly quasiconvex functions.

1. Introduction

Among various notions used in generalized convexity, semistrict quasi-
convexity is one of the oldest; see for instance Ref. 1, where it was called
“strict quasiconvexity.” Recently, it regained attention because of its applica-
tions to the multicriteria optimization problem; see Refs. 2 and 3 and refer-
ences therein.

After the work of Karamardian and Schaible in generalized monotonic-
ity (Refs. 4 and 5) and the developments in the area of nonsmooth analysis,
there has been an effort to characterize the generalized convexity of functions
in terms of the generalized monotonicity of their subdifferential; see for
instance Refs. 6-9. In particular, it was shown that a lower semicontinuous
function f is quasiconvex if and only if its Clarke-Rockafellar subdifferential
is quasimonotone; under the further assumption that the function f'is radi-
ally continuous, f is pseudoconvex if and only if its Clarke-Rockafellar
subdifferential is pseudomonotone. However, for the classes of semistrictly
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quasiconvex and strictly quasiconvex functions, few results are available: in
Refs. 10 and 11, a characterization was given for differentiable functions
only; in Ref. 9, it was shown that, if the Clarke subdifferential of a locally
Lipschitz function f is pseudomonotone (i.e., f is pseudoconvex), then f is
semistrictly quasiconvex.

In this paper, we introduce the notions of semistrict quasimonotonicity
and strict quasimonotonicity for multivalued operators and show that a
locally Lipschitz function f is semistrictly (strictly) quasiconvex if and only
if of is semistrictly (strictly) quasimonotone. Various related results and a
mixed characterization are also established. In the last section, we give an
application to variational inequalities. In particular, we show that, for a
semistrictly quasimonotone operator defined on a weakly compact convex
set K, the dual variational inequality problem has a solution. Since no addi-
tional assumptions are used, we thus strengthen some recent relevant results
(Ref. 12).

2. Notation and Preliminary Results

Let X be a Banach space and let X* be its topological dual. For any
xeX and € >0, we denote by B, (x) the ball {x'eX: ||x'— x| < €}. The value
of the functional ¥*€X ™ at the point ueX will be denoted by (u*, u).

Given x, ye X, we define the closed line segment

[x,]={tx+(1-0y: 0<t<1}.

The segments (x, y], [x,y), and (x, y) are defined analogously. For any
AcX, we denote by co(A4) the convex hull of 4.
We shall consider always functions f: X - R U {+c0} with domain

dom(f) = {xeX:f(x)eR} #.

Functions defined on a subset of X will be considered as taking the value
+ oo outside this subset. Let f be a lower semicontinuous function. The
Clarke-Rockafellar generalized derivative of fat xoedom(f') in the direction
deX is given by (see Ref. 13)

f(xo;d)=suplimsup inf [f(x+td")—f(x)]/t.

€>0 x—yxg d'eBe(d)
150

Here, ¢\ 0 indicates the fact that 1>0 and 1 - 0; x — ;x, means that both
x = Xp and f(x) - f(xo).

The (Clarke-Rockafellar) subdifferential of f at xoedom(f') is defined
by

Of (xo) = {x*eX*: (x*, d) < f(x0, d), VdeX };
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if xoeX \dom(f), then
of (x0)=(.

In this paper, we shall consider mainly functions f which are locally
Lipschitz, in which case f' coincides with the Clarke generalized derivative

f%(x0; d)=lim sup [f(x+td) = f(x)]/2.

X — X0
tN0

In the latter case, we have 0f (xo) # &, whenever xoedom(f).
A function f is called:

(i) quasiconvex if, for all x, yedom(f), one has

f@)<max{f(x), f(»)}, Vzelx,yl;

(ii) semistrictly quasiconvex if dom(f) is convex and, for all
x, yedom(f"), the following implication holds:

S)<f) =, <f(y), Vze(xy);

(iii) strictly quasiconvex if, for all x, yedom(f), one has

f@)<max{f(x), f(»)},  Vze(x,).

A function f is strictly quasiconvex if and only if it is quasiconvex and
is not constant on any line segment [x, y] of its domain. A lower semicontinu-
ous, semistrictly quasiconvex function is quasiconvex. Also, any local mini-
mum xoedom(f) of a semistrictly quasiconvex function f is a global
minimum. For these and other properties of strictly or semistrictly quasicon-
vex functions, we refer the reader to Ref. 14.

We shall consider also multivalued operators T: X — 2¥ * with non-
empty domain

D(T):= {xeX: T(x)#J}.

A multivalued operator T is called quasimonotone if, for all x, yeX, the
following implication holds:

Ix*eT(x): (x*, y—x)>0=Vy*eT(y): (3", y—x)20.
We recall from Ref. 15 the following characterizations of quasiconvexity
for the class of lower semicontinuous functions.
Theorem 2.1. For a lower semicontinuous function f, the following
statements are equivalent:

(a) f is quasiconvex;
(b) 9f is quasimonotone;
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(¢c) for all x, yedom(f),
Ix*edf (x): (x*, y—x)>0= f(z2)<f(y), forall ze[x, ).

The following lemma, which reveals an interesting property of lower
semicontinuous quasiconvex functions, will be used frequently in the sequel.

Lemma 2.1. Letf: X > Ru {+ow} be a lower semicontinuous, quasi-
convex function. Suppose that, for some x, yedom(f), the function f is
constant on the segment [x, y] and that there exists x*edf(x) such that
(x*, y—x)>0. Then, the following statements are true:

(i) every ze(x, y] is a local minimum of the function f;
(i) the point x is not a local minimum;
(iii) for all ze(x, y) and all z*€df(z), we have (z*, y—x)=0.

Proof.

(i) By Theorem 2.1, df is quasimonotone. Let ze(x,y]. Since
(x*, z—x) >0, there exists €>0 such that (x*, z’—x)>0, for all z€B.(z).
Applying Theorem 2.1, we infer that

f@)2f(x)=1(2).
Accordingly, z is a local minimum of f.
(ii) Since (x*, y—x)>0, we have
Sl y=x)>0.

From the definition of the Clarke-Rockafellar derivative, it follows that
there exist € >0 and sequences x, — x and ¢, s 0 such that, for all neN,

inf  [f(Xat1.d")~f(x,)]/1,>0. (D
)

d'eBe(y—x

Choose ne N sufficiently large so that y —x,eB.(y—x). Then, relation (1)
implies that

f(xn+tn(y_xn))>f(xn)-

Since x,+1,(y—x,) belongs to the segment (x,, ) and f is quasiconvex,
we infer that

f(y) >f(xn)a

hence

S(x)>f(xn),

and x is not a local minimum.
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(iii) Suppose that, for some ze(x, y) and some z*€df(z), we have
(z*,y-~x)#0. From the assumption (x*,y—x)>0, it follows that
(x*, z—x)>0, and quasimonotonicity implies that (z*, z—x)>0. Hence,
(z*, y~x) >0 and accordingly (z*, y —z) >0. From part (ii), we deduce that
z is not a local minimum of f. This clearly contradicts (i) |

3. Semistrictly Quasimonotone Operators

Given a differentiable function f: C— R, where C is an open convex
subset of R", it is known (Refs. 10 and 11) that fis semistrictly quasiconvex
if and only if the single-valued map F=Vf is quasimonotone and, for any
distinct x, ye C, one has the following implication:

(F(x),y—x)>0 = 3ze((x+y)/2,¥): (F(2),y—x)>0. (2)

Quasimonotone operators satisfying (2) were called in Ref. 10 semistrictly
quasimonotone. We now generalize this notion to the multivalued case,
considering also the general framework of a Banach space X.

Definition 3.1, A multivalued operator T: X —2*" is called semistrictly
quasimonotone, if it is quasimonotone and, for any distinct x, ye D(T"), one
has the following implication:

Ix*eT(x): (x*, y—x)>0=
Ize((x+)/2,y), 3z2*eT(2): (z*, y—x)>0. 3)

The above definition will be justified later by Theorem 3.2. Relation (3)
has also an equivalent formulation.

Proposition 3.1. Relation (3) is equivalent to the following: If
(x*, y—x)>0 for some x*eT(x), then the set
{ze(x, y): (z*, y—x)>0, for somez*eT(z)}

is dense in [x, y].

Proof. Suppose that (3) holds and that
(x*,y—x)>0, for some x*eT(x).
Let we(x, y]. We define inductively a sequence (z,),<(x, w) such that

lza—wii<(1/2")llx—wl
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and
(zr,y—x)>0, for some z¥ e T(z,),

as follows.

Set z, =x. If z, is defined, then we have
(z¥,w—2z,)>0, forsome z}eT(z,).

Applying relation (3), we choose z,.,e((z,+w)/2,w), such that
(z¥e1, w—2,)>0, for some z}f,,€T(z,+:). Then obviously,

(zne1,y—x)>0
and
Izas1—wl <(1/2)|za—wl < (1/27) I x —w].

Hence, z, — w and the proposition follows. a

We shall need the following mixed characterization of semistrictly quasi-
convex functions, which is analogous to the characterization of quasiconvex
functions, given in Theorem 2.1(c).

Theorem 3.1. A locally Lipschitz function f: X » Ru {+00} is semi-
strictly quasiconvex if and only if, for any x, yedom(f ), the following impli-
cation holds:

Ix*edf (x): (x*, y—x)>0 = Vze[x, y): f(2) <f(»). 4)

Proof. Suppose that (4) holds for all x, yeX. Then, by Theorem 2.1,
f is quasiconvex. If f is not semistrictly quasiconvex, then there exists
x, yedom(f) and ze(x,y) such that f(x)<f(z)=f(y). Applying the
Lebourg mean-value theorem (see Theorem 4.5 in Ref. 16) to the segment
[x, z], we obtain we(x, z) and w*edf(w), such that

(w*, 2= x)=f(2) —f(x)>0.
It follows that
w*, y—w)>0.

Since ze(w, y), relation (4) would then imply f(z) <f(»), a contradiction.
Hence, f is semistrictly quasiconvex.

Conversely, suppose that f'is semistrictly quasiconvex. To show (4), it is
sufficient to show that, if (x*, y — x) > 0 for some x* € 9f (x), then f(x) <f ().
Suppose that f(x)>f(y). For any ze(x, y], we have (x*, z—x)>0; since f
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is quasiconvex, Theorem 2.1 implies that f(x) <f(z). In particular, we have
f(x)=f(yp). It follows easily that f is constant on [x, y].

Since (x*, y—x)>0, applying Lemma 2.1(i), we get that y is a local
minimum; since f is semistrictly quasiconvex, we conclude that y is also a
global minimum. This contradicts Lemma 2.1(ii) and the fact that

Fx)=r(»). O

Remark 3.1. It is clear from the above proof that relation (4) holds
also for lower semicontinuous and semistrictly quasiconvex functions.

Corollary 3.1. Let /: X—>Ru {+00} be a lower semicontinuous and
semistrictly quasiconvex function. For two distinct points x, yedom(f'), let
the function f be constant on the segment [x, y]. Then, for any ze(x, y) and
z*€df(z), one has (z*, y—x)=0.

Proof. Since f(x)=f(z), applying the implication (4) to the segment
[z, x] we conclude that
(z*, x—2)<0, forall z*€df (z).

It follows that (z*, x~y) <0. Similarly, applying (4) to the segment [z, y],
we conclude that

(z*,y—x)<0, forall z*edf (2).
Combining the previous inequalities we get the desired result. O

We now give a characterization of semistrictly quasiconvex functions
by means of their subdifferential.

Theorem 3.2, Let f: X > RuU {+o0} be a locally Lipschitz function.
Then, f is semistrictly quasiconvex if and only if of is semistrictly
quasimonotone.

Proof.

(i) Let first f be semistrictly quasiconvex. Then, f is quasiconvex,
hence df is quasimonotone. If

(x*,y—x)>0, forsome x, yeX and x*edf(x),

then Theorem 3.1 implies that f((x+y)/2) <f(y). Applying the Lebourg
mean-value theorem, we obtain some we((x+y)/2, y) and w*edf (w) such
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that

(1/2)(w*, y—x)=(w*, y— (x+)/2)
=f(N—f((x+»)/2)>0,

as desired.

(ii) Let df be semistrictly quasimonotone. Then, Jf is quasimonotone,
hence f is quasiconvex. Suppose that f is not semistrictly quasiconvex. Then,
there exist x, yedom(f) and ze(x, y) such that f(x) <f(z)=f(»). Since f'is
quasiconvex, it must be constant on [z, y]. From the Lebourg mean-value
theorem, we get x;e(x, ¥) and x Fedf (x,) such that (x¥, y—x)>0. Since df
is semistrictly quasimonotone, by Proposition 3.1 there exists z,e(z, y) and
z¥edf(z) such that (z¥, y—x)>0; hence (z}, y—2z)>0. Lemma 2.1iii)
implies that, for all we(z;, y) and w*e€df (w), one has (w*, y—x)=0. This
clearly contradicts Proposition 3.1.

4, Strictly Quasimonotone Operators

Let f/: C—» R be a differentiable function, where C<R” is open and
convex. It is known (Ref. 10) that f is strictly quasiconvex if and only if
the single-valued map Vf is quasimonotone and, for any distinct x, ye C,
there exists ze (x, y) such that (Vf(z), y — x) # . This leads to the following
definition for the multivalued case in the infinite-dimensional setting.

Definition 4.1. A multivalued operator T: X —2*" is called strictly
quasimonotone, if it is quasimonotone and, for any distinct x, yeD(T),
there exists ze(x, y) and z*eT(z) such that (z*, y—x) #0.

We have the following easy connection to semistrict quasimonotonicity.

Proposition 4.1. If the operator T is strictly quasimonotone, then it is
semistrictly quasimonotone.

Proof. Suppose that x, ye D(T) and (x*, y— x) > 0 for some x* e T (x).
Since T is quasimonotone, for all ze(x, y) and all z*e T'(z), it follows easily
that (z* y—x)=0. In addition, from Definition 4.1 there exists
we((x+)/2,y), w*eT(w) such that W* y—(x+»)/2)#0, ie,
(w*, y—x) #0. It follows that (w*, y—x)>0, hence T is semistrictly quasi-
monotone. O
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Definition 4.1 is justified by the following theorem.

Theorem 4.1. Let f: X —»Ru {+c} be a locally Lipschitz function.
Then, f is strictly quasiconvex if and only if df is strictly quasimonotone.

Proof. If fis strictly quasiconvex, then it is quasiconvex, hence df is
quasimonotone. In addition, for any x, yedom(f), the function f cannot
be constant on the segment [x, y]. Hence, there exists we(x, y] such that
Sfw)#f(x). Applying the Lebourg mean-value theorem, we get ze(x, w)
and z*€df(z) such that (z*, w—x) #0, i.e., (z¥, y—x) #0.

Conversely, suppose that df is strictly quasimonotone. Then, it is semi-
strictly quasimonotone, hence f is semistrictly quasiconvex, Corollary 3.1
shows that f cannot be finite and constant on any segment [x, y]. Hence, f
is strictly quasiconvex. (]

5. Application to Variational Inequalities

Let K be a nonempty, closed and convex subset of X, and let T: K — 2% *
be a multivalued operator. We recall that the variational inequality problem
(VIP) is the following:

Find x,e X such that,
vxeK, IxFe T (x0): (x§, x —x0) =0. (5

It is known (see for instance Refs. 12, 17, and 18) that the previous problem
is closely related to the following one:

Find x,€ K such that,
VxeK, Vx*eT(x): (x*, x —x0) 20. 6)

Following Ref. 12, we shall call problem (6) the dual variational inequality
problem (DVIP).

It is well known that a solution of DVIP is always a solution of VIP,
provided that the operator 7 is, say, upper hemicontinuous. That is why we
shall restrict our attention to DVIP.

In Ref. 12, Theorems 4.1 and 4.2, it was shown that the DVIP (6) has
a solution under the following assumptions:

(a) the operator T is quasimonotone and, for every x, y€ K, the follow-
ing implication holds:

I*eT(x); (x*,y—x)>0=>

ze((x+y)/2,y):¥2*eT(2), (z*,y—x)>0; @)
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(b) T is upper hemicontinuous and its values are w*-compact;

(c) the set K has inner points (see Ref. 19 for the relevant definition);

(d) K is weakly compact, or alternatively there exists a weakly com-
pact subset W of K and a point xoe W such that the following
condition holds:

YxeK \ W, 3x§ € T (x,) such that (x§ , xo— x) <0. ®)

We intend to show that assumptions (b) and (c) can be omitted, and that
assumption (a) can also be weakened considerably. We recall first the defini-
tion of a properly quasimonotone operator, introduced in Ref. 20.

Definition 5.1. An operator 7: X —2*" is called properly quasimono-

tone if, for every xi, X2, .. ., Xx,€X and every yeco{x;, X2, ..., X, }, there
exists i such that
VxreT(x;): (xF,y—x)<0. )

Choosing y = (x; + x; /2), we see that a properly quasimonotone opera-
tor is quasimonotone. Now, we show the following proposition,

Propeosition 5.1. Any semistrictly quasimonotone operator T is prop-
erly quasimonotone.

Proof. If T is not properly quasimonotone, then there would exist
X1, X2, ..., %,€K and y=Y'_ A4x;, with 37, A4,=1 and 4,20, such that,

foreachi=1,2,...,n, there exists x}* € T(x;) with (x}, y — x;) > 0. It follows
that there exists € > 0 such that, for all y'e B.(»), one has
(xF,y' —x)>0, Vi=1,2,...,n. 10)

Suppose that 7T is semistrictly quasimonotone. Then, (x, y —x;) >0 implies
that there exists z&(x;, y) N Be(») and z*e T (2) such that (z*, y—x,)>0;
so, in particular, (z*, y —z)>0. It follows that

T A x—2)=(* y-2)>0;
j=1

hence, for somej=1,2, ..., n, we must have (z*, x;—z) > 0. Since T'is quasi-
monotone, we deduce that

(x¥,x—2)=20, forallxfeT(x)),
thus contradicting (10). |

We note that the converse of Proposition 5.1 does not hold since, for
instance, a subdifferential of a locally Lipschitz, quasiconvex function f is
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properly quasimonotone (in Ref. 20, this was shown even for lower semi-
continuous functions), while it is not semistrictly quasimonotone, unless f
is semistrictly quasiconvex.

The argument used in the proof of the next theorem is well known; we
reproduce it here for the sake of completeness.

Theorem 5.1. Let T:X>2*"bea properly quasimonotone operator
whose domain contains the closed and convex set XK. If assumption (d) holds,
then the DVIP has a solution.

Proof. Define the multivalued mapping G: K - 2" \{&} by
G(x)={yeK: (x*,y—x)<0, for all x*e T (x)}. (1

For every x1, X2, ..., x,€K and yeco{x;, xa, . . ., X, }, proper quasimono-
tonicity implies that ye|Ji-; G(x;). In addition, for each xeK, G(x) is
weakly closed; thus, if K is weakly compact, then for each xeK, G(x) is
also weakly compact. Otherwise, the coercivity condition (8) gives
G(xo) = W, hence G(x,) is weakly compact. In both cases, the well-known
Ky Fan lemma (Ref. 21) implies that ﬂxe x G(x)# . It is clear that any
x0€[ \xex G(x) is a solution of DVIP. O

It is obvious that the above theorem, together with Proposition 5.1,
strengthen Theorems 4.1 and 4.2 of Ref. 12, since condition (a) implies
that 7' is semistrictly quasimonotone, hence properly quasimonotone, while
conditions (b) and (¢) are not used.
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On the Subdifferentials of Quasiconvex and Pseudoconvex
Functions and Cyclic Monotonicity!

Aris Daniilidis? and Nicolas Hadjisavvas®

ABSTRACT. The notions of cyclic quasimonotonicity and cyclic pseudomono-
tonicity are introduced. A classical result of convex analysis concerning the cyclic
monotonicity of the (Fenchel-Moreau) subdifferential of a convex function is ex-
tended to corresponding results for the Clarke-Rockafellar subdifferential of qua-
siconvex and pseudoconvex functions.

The notion of proper quasimonotonicity is also introduced. It is shown that this
new notion retains the characteristic property of quasimonotonicity (i.e. a lower
semicontinuous function is quasiconvex if and only if its Clarke-Rockafellar subdif-
ferential is properly quasimonotone), while it is also related to the KKM property
of multivalued maps; this makes it more useful in applications to variational in-
equalities.

1. Introduction

Let X be a Banach space and f : X — R|J{+o0} a lower semicontinuous (Isc)
function. According to a relatively recent result of Correa, Joffre and Thibault
(see [7] for reflexive and [8] for arbitrary Banach spaces), the function f is convex if
and only if its Clarke-Rockafellar subdifferential 0 f is monotone. In the same line
of research, much work has been done to characterize the generalized convexity of
Isc functions by a corresponding generalized monotonicity of the subdifferential.
Thus Luc [15] and, independently, Aussel, Corvellec and Lassonde [2], showed
that f is quasiconvex if and only if Jf is quasimonotone. Similarly, Penot and
Quang [16] showed that if the function f is also radially continuous, then f is
pseudoconvex if and only if Jf is pseudomonotone (in the sense of Karamardian
and Schaible [14], as generalized for multivalued operators by Yao [20]). In section
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2, we review these results, together with some notation and definitions, and show
that in most cases the radial continuity assumption is not necessary.

However, since the Clarke-Rockafellar subdifferential of a convex function co-
incides with the classical Fenchel-Moreau subdifferential [19], it is not only mono-
tone, but also cyclically monotone [17]. In section 3 of this work, we define
analogous notions of cyclic quasimonotonicity and cyclic pseudomonotonicity and
show that the subdifferential of quasimonotone and pseudomonotone functions
have these properties respectively. Cyclic generalized monotonicity is not just
a stronger property than the corresponding generalized monotonicity, but it ex-
presses a behavior of a specific kind; In particular, an operator can even be strongly
monotone without being cyclically quasimonotone.

Cyclic (generalized) monotonicity describes the behavior of an operator around
a “cycle” consisting of a finite number of points. In section 4 we consider instead
the convex hull of such a cycle. We show that the definitions of monotone and
pseudomonotone operators can be equivalently stated in terms of this convex hull.
This is not so for quasimonotone operators; this leads to the introduction of the
new notion of a properly quasimonotone operator. We show that this new notion,
while retaining the important characteristics of quasimonotonicity (in particular,
f is quasiconvex if and only if df is properly quasimonotone) is often easier to
handle; in particular, it is closely related to the KKM property of multivalued
maps. We show this by an application to Variational Inequalities. In addition,
quasimonotonicity and proper quasimonotonicity are identical on one dimensional
spaces, which is probably the reason why the latter escaped attention.

2. Relations between generalized convexity and generalized
monotonicity

We denote by X* the dual of X and by (z*, x) the value of z* € X* at x € X.
For z,y € X we set [z,y] = {te + (1 —¢t)y : 0 < ¢t < 1} and define (z,y],
[z,y) and (x,y) analogously. Given a lsc function f : X — R[J{+oo} with
domain dom(f) :={z € X : f(x) < 400} # 0, the Clarke-Rockafellar generalized
derivative of f at xg € dom(f) in the direction d € X is given by (see [19]):

f(z +td) — f(x)

T ,d) = suplimsup inf 91
S (@o,d) e>€ zafzop d'€Be(d) t (2.1)
t\.0



where B.(d) = {d' € X : ||d' —d|| < e}, t \, 0 indicates the fact that ¢ > 0 and
t — 0, and © — z, means that both x — z, and f(x) — f(z,).
The Clarke-Rockafellar subdifferential of f at zq is defined by

Of (xg) = {z* € X : (2*,d) < f'(wo,d),Vd € X}. (2.2)

We recall that a function f is called quasiconvex, if for any x,y € X and
z € [x,y] we have

f(z) < max{f(z), f(y)} (2.3)

A lsc function f is called pseudoconvex [16], if for every z,y € X, the following
implication holds:

St € Of(2): (o y —a) 2 0= f() < f(y) (2.4)

It is known [16] that a lsc pseudoconvex function which is also radially con-
tinuous (i.e. its restriction to line segments is continuous), is quasiconvex. Both
quasiconvexity and pseudoconvexity of functions are often used in Optimization
and other areas of applied mathematics when a convexity assumption would be
too restrictive [5].

Let T : X — 2% be a multivalued operator with domain D(T) = {r € X :
T(x) # (}. The operator T is called

(i) cyclically monotone, if for every xq, s, ..., x, € X and every x} € T'(x1), x5 €
T(x3), ...,z € T(x,) we have

n

Z(x;k,a:iﬂ —x;) <0 (2.5)

i=1

(where x,41 1= 21).
(il) monotone, if for any z,y € X, 2* € T(x) and y* € T(y) we have

(v —a"y—2) >0 (2.6)

(iii) pseudomonotone, if for any z,y € X, 2* € T(z) and y* € T(y) the
following implication holds:

(% y—2)=20= (y",y—2) 20 (2.7)



or equivalently,

(iv) quasimonotone, if for any =,y € X, * € T'(x) and y* € T(y) the following
implication holds:

(zy—x)>0= (y",y—2)>0 (2.9)

The above properties were listed from the strongest to the weakest. We re-
call the hitherto known results connecting generalized convexity with generalized
monotonicity:

Theorem 2.1. Let f : X — R|J{+oo} be a lower semicontinuous function.
Then

(i) f is convex if and only if Of is monotone [8]. In this case Of is also cyclically
monotone (see for instance [17]).

(ii) f is quasiconvex if and only if Of is quasimonotone (see [2] or [15]).

(iii) Let f be also radially continuous. Then f is pseudoconvex if and only if O f
is pseudomonotone (see [4] or [16]).

We now show that pseudoconvexity of a function f implies quasiconvexity of
f and pseudomonotonicity of Jf, even without the radial continuity assumption:

Proposition 2.2. Let f : X — R|J{oo} be a Isc, pseudoconvex function with
convex domain. Then:

(i) f is quasiconvex

(ii) Of is pseudomonotone.

Proof: (i) Suppose that for some x1, x5 € dom(f) and some y € (x1,x) we
have f(y) > max{f(z1), f(z2)}. Set m = max{f(z1), f(x2)}. Since f is lower
semicontinuous, there exists some € > 0 such that f(y') > m, for all ' € B.(y).
From (2.4) it follows (see also [4]) that the sets of local and global minimizers
of the function f coincide; hence the point y cannot be a local minimizer, so
there exists w € B.(y) such that f(w) < f(y). Applying Zagrodny’s Mean Value
Theorem [21, Theorem 4.3] to the segment [w, y|, we obtain u € [w,y), a sequence
u, — u and u} € Of(u,), such that (u},y — u,) > 0. Since y € co{xy, x5} it
follows that (u},x; —u,) > 0, for some ¢ € {1,2}. Using relation (2.4) we get



m > f(z;) > f(u,) and, since f is lower semicontinuous, m > f(u). This clearly
contradicts the fact that u € B.(y).

(ii) Let 2* € Of(x) be such that (z*,y —x) > 0. By part (i), f is quasiconvex,
so applying Theorem 2.1(ii) we conclude that df is quasimonotone. Hence (y*, y—
x) >0, for all y* € df(y). Suppose to the contrary that for some y* € df(y) we
have (y*,y —x) = 0. From relation (2.4) we obtain f(x) > f(y).

On the other hand, since f'(z;y — x) > 0, there exists ; > 0, such that for
some x,, — z, t, \, 0 and for all y/ € B, (y), we have f(z,+t,(y —x,)) > f(x,).
Quasiconvexity of f implies f(y') > f(z,), for every ' € B, (y). In particular
f() > f(x) (since f is Isc), hence f(y') > f(y). The latter shows that y is a
local minimizer, hence a global one. This is a contradiction, since we have at least

fly) > f(z,) N

It is still an open question whether pseudomonotonicity of df implies pseudo-
convexity of f, without the radial continuity assumption. As a partial result, we
have the following proposition, which will be of use in the next section.

Proposition 2.3. Let f be a Isc function such that 0 f is pseudomonotone. Then
f has the following properties:
(i) If 0 € Of (), then x is a global minimizer

(ii) 3a* € Of (@) : (a*,y — ) > 0 = f(y) > ()

Proof: (i) Suppose that f(y) < f(z). Then using again Zagrodny’s Mean
Value Theorem, we can find a sequence z, — 2z € [y,z) and z € 0f(z,), such
that (2,2 — z,) > 0. By pseudomonotonicity, (z*, 2z — z,) > 0 for all 2* € 9f(x),
ie. 0¢0f(x).

(ii) Let us assume that for some z* € 0f(x) we have (z*,y — z) > 0. We may
choose € > 0 such that (z*,9 —x) > 0, for all ¥/ € B.(y). Since df is obviously
quasimonotone, from Theorem 2.1(ii) we conclude that f is quasiconvex; it then
follows that f(y) > f(z) (see for instance Theorem 2.1 in [4]). Suppose to the
contrary that f(x) = f(y). Then f(y') > f(z) = f(y), so f has a local minimum
at y. It follows that 0 € Of(y) (see for instance [21, Th.2.2(c)]). However Jf is
pseudomonotone, hence we should have (see relation (2.8)) (y*,y —z) > 0, for all
y* € 0f(y), a contradiction.ll

3. Generalized cyclic monotonicity

We first introduce cyclic quasimonotonicity.



Definition 3.1. An operator T : X — 2% is called cyclically quasimonotone, if
for every xy, s, ..., T, € X, there exists an i € {1,2,...,n} such that

(z], i1 — 2;) <0,V € T(x) (3.1)
(where x,1 = 7).

It is easy to see that a cyclically monotone operator is cyclically quasimono-
tone, while a cyclically quasimonotone operator is quasimonotone. Cyclic quasi-
monotonicity is considerably more restrictive than quasimonotonicity (see Exam-
ple 3.5 below). However, this property characterizes subdifferentials of quasicon-
vex functions, as shown by the next theorem.

Theorem 3.2. Let f : X — R|J{+oo} be a lower semicontinuous function.
Then f is quasiconvex if and only if Of is cyclically quasimonotone.

Proof: In view of Theorem 2.1(ii), we have only to prove that if f is quasi-
convex then df is cyclically quasimonotone.

Assume to the contrary that there exist x1, zo, ...,z, € D(0f) and z} € 0f(z;)
such that (z, 2,41 —x;) > 0, for i = 1,2,...,n (where as usual x,.; = x;). It
follows that f'(z;, ;41 — x;) > 0. In particular, for every i there exists g; > 0,
0; > 0 such that

f( + td) — f ()

lim sup inf > 60; > 0. (3.2)
1'/'_>f$i dEBEi (:l‘i+1—:l‘i) t
Zt\,()

We set € = Z=H1u2nn€’ and 0 = Z:nln?nnél For any y € B:(z;) and 274 € B (wi11)

we have y — 2}, € Be(7;11 — x;); hence we can choose z; € Bs(z;) and t; € (0,1)
such that

fl@i+ iz, — 7)) — f(3)

inf >0>0 (3.3)
z;_HEB% (zit1) t;
or equivalently
f(@i +ti(ai — 20) > f(2:) + 0, Yoy, € Bs(2ig1) (3.4)

fori=1,2,..,n.



Now for every i we choose w7, ; = 41, hence (3.4) becomes
f(@ + (@ — 23)) > f(2:) + 0 (3.5)

fori=1,2,...,n.
Since f is quasiconvex, (3.5) implies that

f(@iy1) > f(@ + ti(Tig1 — 1)) (3.6)
for i = 1,2,...,n. Combining with (3.5) and adding for i = 1,2,...,n, we get
0>0(>",t), acontradiction.l

In [18] it was proved that the subdifferential of a convex function is a max-
imal monotone and maximal cyclically monotone operator. An analogous prop-
erty does not hold for quasiconvex functions, since for the quasiconvex function
f(z) = sgn(z)\/| = |, * € R, it is known (see [15]) that df is not maximal quasi-
monotone. The following proposition shows that it is neither maximal cyclically
quasimonotone:

Proposition 3.3. Every quasimonotone operator T : R — 2 is cyclically quasi-
monotone.

Proof: We assume to the contrary that the operator T is quasimonotone and
there exist z1, xa, ..., x, € R, xf € T(x;), such that

(I‘;‘, Tiv1 — .IZ) >0 (37)

for i = 1,2,...,n (where x,,1 = x1). Set xjy = max z;. Then relation (3.7)

1=1,2,....,n

implies that z3, < 0. On the other hand, since xy_; < ), we conclude from
(3.7) that =3, _; > 0. Thus (z3,_1,2nm — xp—1) > 0, while (3, xp — 2p-1) <0,
which contradicts the definition of quasimonotonicity.ll

We now introduce cyclic pseudomonotonicity:

Definition 3.4. An operator T : X — 2% is called cyclically pseudomonotone,
if for every x1,xs, ..., x, € X, the following implication holds:

die{1,2,....,n},3z; € T(x;) : (2}, 0441 — ) >0 = (3.8)
Jj€{1,2,...,n},Vaj € T(x;) : (x], 0501 —x5) <0

(where x, 1 = 7).



One can easily check that every cyclically monotone operator is cyclically pseu-
domonotone, while every cyclically pseudomonotone operator is pseudomonotone
and cyclically quasimonotone. On the other hand, the following example shows
that cyclic generalized monotonicity differs essentially from generalized mono-
tonicity:

Example 3.5. Let T : R* — R* be defined by T(a,b) = (% — b,a + ). Then
the operator T' is monotone (and even strongly monotone, i.e. satisfies (T'(x) —
T(y), z—y) > k||z — y||* for all z,y € R? where k is a constant). In particular, T is
pseudomonotone and quasimonotone. However, it is not cyclically quasimonotone,
as one sees by considering the points 1 = (1,0),22 = (0,1),23 = (—1,0) and
Ty = (0, —1)

We now show the following strengthening of Theorem 2.1(iii).

Theorem 3.6. Let f: X — R|J{+oo} be a Isc function. If f is pseudoconvex,
then Of is cyclically pseudomonotone. Conversely, if 0f is pseudomonotone and
f is radially continuous, then f is pseudoconvex.

Proof: Again we have only to show that if f is pseudoconvex then Of is
cyclically pseudomonotone. Assume to the contrary that there exist xy, xo, ..., x, €
D(0f) and z} € Of(x;) such that (z,x;11 — ;) > 0, for i = 1,2,....,n (where
Tp41 = 21), while for some 4, and some z} € 0f(z;,) we have

(m:(;? :Cio+1 - xio) > 0 (39)

By the definition of pseudoconvexity (relation (2.4)) we have f(x;11) > f(24),
fori =1,2,...,n, hence all f(z;) are equal. In particular, f(z; 1) = f(x;,), which
contradicts (3.9) in view of Proposition 2.3.1

4. Proper Quasimonotonicity

The definitions of monotonicity and pseudomonotonicity have an equivalent
formulation, which involves a finite cycle of points and its convex hull:

Proposition 4.1. (i) An operator T is monotone, if and only if for any 1, x, ..., x, €
X and every y =Y o, Niw;, with > \; =1 and \; > 0, one has

n

Ai osup (xf,y —x;) <0. (4.1)

=1 ri€T(x)



(ii)) An operator T' with convex domain D(T') is pseudomonotone, if and only
if for any x1, s, ...,x, € X and every y = > Ny, with > - A\ =1 and \; > 0,
the following implication holds:

Fe{l,2,.n}, 3z € T(x;) : (2], y — ;) >0 = (4.2)
3j €{1,2,..n},Va; € T(xy) : (z5,y — ;) <O,

Proof: If the operator T satisfies condition (4.1) (respectively (4.2)), then by
choosing y = MQ’”?, we conclude that it is monotone (respectively pseudomono-
tone). Hence it remains to show the two opposite directions.

Let us first suppose that T' is monotone. Then for any xy, s, ..., z, € X, any
x; € T(v;) (for i = 1,2,..n) and any y = > 7| Ajzy, with 37 | A; = 1 and
Aj > 0, we have:

Z)\i(iﬂf,y — ;) = ZZ)\MJ‘@?,% —x;) =
i=1 i=1 j=1
i>j i>j

where the last inequality is a consequence of the monotonicity of 7. Hence T
satisfies relation (4.1).

We now suppose that the operator 7' is pseudomonotone. If relation (4.2) does
not hold, then there exist xy, z9, ...,z, € X, xf € T(z;) for i = 1,2, ...n, and some
y =iy Ajrj with 357 | A =1 and A; > 0, such that

(z7,y —z;) 20 (4.3)
while for at least one ¢ (say i = 1),
(x],y —x1) > 0. (4.4)

In particular we have 1, xa,...,z, € D(T), hence T(y) # 0. Choose any y* €
T(y). Relations (2.7) and (4.3) show that

(¥ y—xi) >0 (4.5)

for all y* € T'(y) and all i’s. Since >, X\;(y*,y — z;) = 0, relations (4.5) show that
(y*,y —x;) = 0 for all i’s. On the other hand, relation (4.4) together with (2.8)
imply that (y*,y — 1) > 0, a contradiction. H

9



In view of the above Proposition, one could seek an equivalent formulation for
the definition of quasimonotonicity, which would involve again the convex hull of
a finite cycle. However, in contrast to monotone and pseudomonotone operators,
this leads to a different, more restrictive definition:

Definition 4.2. An operator T : X — 2%" is called properly quasimonotone, if
for every x1, %o, ...,x, € X and everyy = Y - Njx;, with Y ", X\; = 1 and \; > 0,
there exists ¢ such that

Vai € T'(xz;) : (2f,y —x;) <O0. (4.6)

Choosing y = %, we see that a properly quasimonotone operator is quasi-
monotone. As in Proposition 3.3, it is easy to show that the converse is true
whenever X = R; however, it is not true in general, as the following example

shows.

Example 4.3. Let X = R? z; = (0,1), x5 = (0,0), 23 = (1,0). We define
T:R?>— R? by T(x) = (—=1,-1), T(z2) = (1,0), T(x3) = (0,1) and T(x) = 0
otherwise. It is easy to check that T is quasimonotone but not properly quasi-
monotone (it suffices to consider y = 322+ )

The class of properly quasimonotone operators, though strictly smaller than
the class of quasimonotone operators, is in a sense not much smaller. This is
shown in the next proposition.

Proposition 4.4. (i) Every pseudomonotone operator with convex domain is
properly quasimonotone.
(ii) Every cyclically quasimonotone operator is properly quasimonotone

Proof: (i) This is an obvious consequence of Proposition 4.1(ii).

(ii) Suppose that the operator T is not properly quasimonotone. Then there
would exist 1, z, ...,x, € D(T), x} € T(z;) and y = > | Aj; with \; > 0, such
that

(2}, — ) >0 (4.7)
for i = 1,2,...,n. Set x;n1) = 1. Relation (4.7) implies that Zj )\j(x;‘(l T —

zi(1y) > 0. It follows that for some z; # 1 we have (z},),z; — z;1)) > 0. We

10



set x;2) = x; and apply relation (4.7) again. Continuing in this way, we define a
sequence (1), Tj(), -.. such that

(mr(ky Li(k+1) — xi(k)) >0 (4.8)

for all k € N.

Since the set {z1,x9,...,x,} is finite, there exist m,k € N, m < k such that
Ti(k+1) = Tigm)- Lhus, for the finite sequence of points (), Ti(m41),---, Tik) rela-
tion (4.8) holds. This means that 7" is not cyclically quasimonotone. B

Combining Proposition 4.4(ii) and Theorem 3.2, we get the following corollary.

Corollary 4.5. A lower semicontinuous function f is quasiconvex if and only if
df is properly quasimonotone.

The converse of Proposition 4.4 does not hold. For instance, the operator T’
defined in Example 3.5 is properly quasimonotone (since it is monotone, hence
pseudomonotone), but not cyclically quasimonotone. On the other hand, any sub-
differential of a continuous quasiconvex function f is properly quasimonotone, but
not pseudomonotone unless f is also pseudoconvex. Thus, between the various
generalized monotonicity properties we considered, the following strict implica-
tions hold, and none other:

cyclically monotone — monotone
| !
cyclically pseudomonotone — pseudomonotone
! |
cyclically quasimonotone —— properly quasimonotone
l
quasimonotone

Note that the implication (pseudomonotone — properly quasimonotone) holds
under the assumption that the domain of the operator is convex.

We recall that a multivalued mapping G : X — 2% is called KKM [11], if for
any i,%s,...,r, € X and any y € co{xy,xs,...,x,} one has y € |J, G(z;). It is
easy to see that an operator 7' : X — 2% is properly quasimonotone if and only
if the multivalued mapping G : X — 2%" defined by

G)={ye K+ sup (1) <0} (49)
z* €T (x)

11



is KKM. This suggests an obvious application to Variational Inequalities. All
known theorems of existence of solutions for quasimonotone Variational Inequality
Problems require extra assumptions on the domain of the operator (see [12]) and,
in case of a multivalued operator, on its values (see [9]). As the following theorem
shows, existence of solutions for properly quasimonotone operators requires very
weak assumptions. We first recall from [1] the following definition.

Definition 4.6. The operator T : X — 2% is called upper hemicontinuous, if
its restriction to line segments of its domain is upper semicontinuous, when X* is
equipped to the weak-+ topology.

We now have:

Theorem 4.7. Let K be a nonempty, convex and w-compact subset of X. If
T is a properly quasimonotone, upper hemicontinuous operator with K C D(T)),
then there exists an xy € K, such that for every x € K, there exists x* € T(xg)
such that:

(", — 1) >0 (4.10)

Proof: Since the multivalued map G defined by (4.9) is KKM, and the sets

G(x) are obviously weakly closed, by Ky Fan’s Lemma [10] one has [ G(x) # 0.
zeK
Take any zo € () G(z). We shall show that zg is actually a solution of (4.10).
zeK
We assume to the contrary, that for some z € K and all z* € T'(xy) we have

(x*,x—x0) < 0. Theset V = {z* € X*: (z*,x—x0) < 0} is a w*- neighborhood of
T'(z0); hence, if we set x; = tx+(1—t)xq, by the upper hemicontinuity assumption,
we have T'(x;) € V for all ¢ sufficiently small. Since x; —x¢ = t(z —zy), this means
that (z*,z; — x9) < 0 for all 2* € T'(zy), i.e. x9 ¢ G(x;). This contradicts the
definition of z(.H

We conclude with a final remark. The notion of a quasimonotone operator
was introduced to describe a property that characterizes the subdifferential of a
Isc quasiconvex function. Since proper quasimonotonicity does exactly the same
thing and is directly related to the KKM property, it is possibly a good candidate
to replace quasimonotonicity in most theoretical and practical applications.

12
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AN APPROPRIATE SUBDIFFERENTIAL FOR
QUASICONVEX FUNCTIONS*
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Abstract. In this paper we introduce and study a subdifferential that is related to the quasi-
convex functions, much as the Fenchel-Moreau subdifferential is related to the convex ones. It is
defined for any lower semicontinuous function, through an appropriate combination of an abstract
subdifferential and the normal cone to sublevel sets. We show that this “quasiconvex” subdifferential
is always a cyclically quasimonotone operator that coincides with the Fenchel-Moreau subdifferential
whenever the function is convex, and that under mild assumptions, the density of its domain in the
domain of the function is equivalent to the quasiconvexity of the function. We also show that
the “quasiconvex” subdifferential of a lower semicontinuous function contains the derivatives of its
differentiable quasiaffine supports. As a consequence, it contains the subdifferential introduced by
Martinez-Legaz and Sach in a recent paper [J. Conver Anal., 6 (1999), pp. 1-12]. Several other
properties and calculus rules are also established.

Key words. subdifferential, quasiconvex function, nonsmooth analysis, quasimonotone operator
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1. Introduction. In the last thirty years, several notions of subdifferentials
for quasiconvex functions have been proposed. The oldest ones are the Greenberg—
Pierskalla subdifferential [6] and the tangential introduced by Crouzeix [4]. These
two subdifferentials have in common that they are convex cones, and are therefore
too large to give enough information on the function. The lower subdifferential of
Plastria [13] is smaller but still unbounded, as are the related a-lower subdifferentials
[10]. All of these subdifferentials arise in the context of some quasiconvex conjugation
scheme. Of a different nature is the weak lower subdifferential [9], which is more in
the spirit of nonsmooth analysis in that its support function partially coincides with
the directional derivative; however, this set is not quite satisfactory either, as it is
even bigger than the lower subdifferential of Plastria. Trying to remedy this draw-
back, Martinez-Legaz and Sach [11] recently introduced the Q-subdifferential. Given
that it is a subset of the Greenberg—Pierskalla subdifferential, it shares with all other
quasiconvex subdifferentials the property that its nonemptiness on the domain of a
lower semicontinuous function implies quasiconvexity of the function, which justifies
the claim that it is a quasiconvex subdifferential; on the other hand, unlike all other
subdifferentials previously introduced in quasiconvex analysis, it can be regarded as
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a small set, as it is contained in the Fréchet subdifferential. But this advantage is,
at the same time, the main drawback of this subdifferential, as one has to impose
rather strong assumptions on a quasiconvex function to ensure the nonemptiness of
its Q-subdifferential on a dense subset of the domain.

In view of all these considerations, one can reasonably say that the problem of
defining a sufficiently good subdifferential for quasiconvex functions is still open. To
solve it, one has first to set the standards that such a concept should meet. In this
sense, we can formulate the general principle that a quasiconvex subdifferential should
be related to quasiconvex functions in a way similar to the classical Fenchel-Moreau
subdifferential’s relation to convex functions. Let us be more precise. The Fenchel—
Moreau subdifferential is well defined for an arbitrary function, while, under mild con-
ditions, its nonemptiness on a dense subset of the domain of a lower semicontinuous
function is equivalent to convexity of the function. Similarly, a quasiconvex subdiffer-
ential should be defined for arbitrary functions, but its nonemptiness on the domain
of a lower semicontinuous function should be equivalent (under mild assumptions)
to quasiconvexity of the function. Another desirable property of any (quasiconvex)
subdifferential is that it should reduce to the Fenchel-Moreau subdifferential in the
case of convex functions. As we shall prove below, the quasiconvex subdifferential
introduced in this paper satisfies all these requirements. Moreover, it is smaller than
all previously defined quasiconvex subdifferentials (except the Q-subdifferential), as
it is contained in the upper Dini subdifferential.

The new subdifferential is defined through an appropriate combination of an
abstract subdifferential (in the sense of the axiomatic scheme of Aussel-Corvellec—
Lassonde [2]) and geometrical considerations based on the notion of the normal cone
to sublevel sets, in such a way that it retains important properties from both. For
instance, for the class of quasiconvex functions our subdifferential is identical (under
mild conditions) to the abstract subdifferential, so that it inherits the same calculus
rules; on the other hand, for any continuous function f, the existence of a nonzero
element of the subdifferential at x(y implies that f is “quasiconvex with respect to xg,”
in the sense that if zg = Az +(1—N)y, with 0 < X < 1, then f(xg) < max{f(x), f(y)}.

The rest of the paper is organized as follows. Section 2 establishes the notation
and some preliminaries related to the abstract subdifferentials upon which our qua-
siconvex subdifferential is built. The central part of the paper is section 3, where the
quasiconvex subdifferential is introduced and compared with other subdifferentials,
and its main properties are discussed.

2. Notation and preliminaries. In what follows, X # {0} will denote a Ba-
nach space and X* its dual. For any z € X and z* € X* we denote by (x*,x) the
value of z* at x. For x € X and € > 0 we denote by B.(z) the closed ball centered
at x with radius € > 0, while for z, y € X we denote by [z,y] the closed segment
{tz+(1—t)y : t € [0,1]}. The segments |z, y], [z,y[, and |z, y[ are defined analogously.

Throughout this article we shall deal with proper functions f : X — R U {400}
(i.e., functions for which dom(f) = {# € X : f(z) < 400} is nonempty). For
any a € R the sublevel (resp., strict sublevel) set of f corresponding to a is the set
Se(f)y={z e X: f(z)<a} (resp., ST (f) ={x € X : f(z) <a}). We shall use S,
and S if there is no risk of confusion.

The Fenchel-Moreau subdifferential 0¥ f (z) of f at any = € dom(f) is defined
by the formula

(2.1) "M f(z) = {2" € X*: f(y) > f(a) + ",y —x) Vye X}
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(If z ¢ dom(f), then we set OFM f(z) = ().)
Another useful subdifferential is the Greenberg-Pierskalla subdifferential 9% f,
given by
(2.2) O f(x)={2" € X*: (z*,y—a) > 0= f(y) > f (2)}.
Given a set C' C X and x € X, the normal cone to C at z is by definition the cone
Ne(x)={2" e X*:VyeC, (z",y—z) <0}.

Let Ny (x) := Ns,, () (vesp., Nf (z) = st<(“) (x)) be the normal cone to the
sublevel (resp., strict sublevel) set corresponding to the value f (x). The following
equivalencies are straightforward:

(2.3) " € Ny (z) = (Wye X, (z"y —2) > 0= f(y) > f(2));

(2.4) " €NF (z) &= (WeX (@"y—2)>0=f(y) = f(2)).
Combining the above relations it follows that
9T f (x) C N7 (z) and Ny (z) € N ().

Besides 0™ and 9%F, one can define other subdifferentials which, unlike the
former ones, depend only on the local properties of the function f. Such is the
Fréchet subdifferential 0F f(z), defined by

0" f(x) = {z" € X*: f(y) = f(a) + ",y —z) + oy —z) Vye X},
where o : X — R is some real valued function satisfying

lim o(z) =

2=0 [|lz]|

Another “local” subdifferential is the upper Dini subdifferential 9 " f, defined as
follows:

0P f(z) :{ {z* € X* : (2*,d) S@fD+ (w,d),Vde X} ifz e dom(f),

if © ¢ dom (f),

where

(2.5) fDJr (z,d) :hmsup}(f (x+td) — f ().
o+ t

Both the upper Dini and the Fréchet subdifferential belong to a larger class of
subdifferentials defined axiomatically. We recall from [2, Definition 2.1] the relevant
definition.

DEFINITION 1. A subdifferential O is an operator that associates to any lower
semicontinuous (Isc) function f: X — RU {400} and any x € X a subset Of (x) of
X* so that the following properties are satisfied:

(P1) of (x) = OFM f(z), whenever f is convex;
(P2) 0 € Of(x), whenever f has a local minimum at x; and

(P3) f +9)(x) Caf(x) + dg(x)
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for all convex continuous functions g for which both dg(x) and d(—g)(x) are nonempty.
(Such functions are called O0-differentiable at x.)

Other subdifferentials satisfying the above properties are the Gateaux, Hadamard,
and Clarke-Rockafellar subdifferentials [2].

Remark 2. Let us observe, in relation to Property (P1), that

(2.6) o"Mrcor

for any lsc function f. Indeed, take any zp € X and any z* € 0FM f (xy). Then
relation (2.1) guarantees that the function

g(x) = f(x) — ({&", 2 — zo)

has a minimum at zp, which yields in view of (P2) that 0 € dg (). Using Properties
(P3) and (P1) we now conclude

0€0f (wo) +0((—2",- — o)) = Of (z0) — 27,

ie., z* € f (xo).

For the purposes of the present paper we shall always use a subdifferential 9 such
that & C 9P

We further recall from [2, Definition 2.2] the following definition.

DEFINITION 3. A norm |.|| on X is said to be 0-smooth if the functions of the
form x— 3", pnl|lz — v, ||* are 0-differentiable, where the sequence (v,) converges in
X, pn >0, and the series Y, i is convergent.

We shall always assume that the space X admits a d-smooth renorming. (Note
that this condition is automatically satisfied if 0 is the Clarke—Rockafellar subdiffer-
ential; also, all reflexive Banach spaces admit a 9-smooth renorming.) In such a
case, the following mean value theorem holds [2, Theorem 4.1].

THEOREM 4. Let f be lsc and O be a subdifferential. If x,y € X and f (y) > f (x),
then there exist z € [x,y[ and sequences (x,,) C dom(f), (x}) C X*, such that x,, — z,
x) € 0f(xy), and

(xr,z+t(y—x)—xy) >0 Vt>0.

In particular, dom(0f) is dense in dom(f).

Subdifferentials can be used to characterize lsc quasiconvex functions. We recall
that a function f : X — RU {400} is called quasiconvez if its sublevel sets S, are
convex subsets of X for all @ € R. In [1] it has been shown that a function f is
quasiconvex if and only if the following property is true:

(2.7) if z* € 0f (x) and (z",y —x) >0, then f(2) < f(y) Vzé€[z,y]

An easy consequence of (2.7) is the following property of lsc quasiconvex functions

(for 8f C P f):
(2.8) if z* € 0f (z) and (z*,y —x) > 0, then f (y) > f(x).
Indeed, z* € 9f (z) and (z*,y —z) > 0 yield fDJr (z,y — ) > 0; hence for some

t > 0 (suitably small) we have f(z) < f(r+t(y —z)). From (2.7) it follows that
fx+t(y—=x)) < f(y); hence the result.
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Next let T : X = X* be a multivalued operator. Following [5] we say that T
is cyclically quasimonotone if for any n > 1 and any x1,x9,... ,x, € X there exists
i€{1,2,...,n} such that

(2.9) (xf, 201 —x) <0 Vai € T(xy)
(where 2,41 := x1). If we restrict n in (2.9) to n = 2, then T is called quasimonotone.

3. The “quasiconvex” subdifferential 99. In this section we introduce the
“quasiconvex” subdifferential 9 whose definition depends on both local and global
properties of the function. We show that this subdifferential seems completely adapted
in quasiconvex analysis (as far as one considers that the Fenchel-Moreau subdifferen-
tial 9F'M is apt in convex analysis). In subsection 3.1 we compare the subdifferential
07 with the one defined recently in [11], while in subsection 3.2 we present some
interesting properties of 09.

Given an abstract subdifferential 0 (according to Definition 1) contained in 97 +,
we introduce below the “quasiconvex” subdifferential 99.

DEFINITION 5. The quasiconvex subdifferential 01f : X = X™* of f is defined for
all z € dom(f) as follows:

qf () = Of (x) N Ny (x) if N7 (x) # {0},
o )_{ 0 ifof(a:):{O}.

If © ¢ domf, then we set 91f (x) = ().

We present some fundamental properties of 99 in the following propositions.

PROPOSITION 6. For every proper function f, the operator 01f is cyclically
quasimonotone.

Proof. It is sufficient to show that the operator N; (relation (2.3)) is cycli-
cally quasimonotone. The proof follows exactly the same pattern as the proof of
quasimonotonicity of Ny in [12]. If 2; € X, i = 1,2,... ,n, and 2] € Ny (z;) are
such that (xf,z;41 — ;) > 0 for all ¢ (where z,41 = x1), then (2.8) implies that
f(xig1) > f(x;) for all i. By transitivity we conclude f (x1) > f (x1); hence we have
a contradiction. ]

PROPOSITION 7. Let f be a radially continuous function (that is, the restriction
of f on line segments is continuous). Then

(1) for all x € dom (f) we have

apin | OF@)NNg(x) if 99T f(x) #0,
8f($6)—{ 0 ! ifaGPf(l‘):(Z)

In particular for any x € X, if 09f (x) # 0, then 0FF f (x) # 0.

(i) 9 (2)\ {0} C 99Pf (x) .

Proof. (i) If 0 € 99T f (z), then 9T f (x) = X*. Hence, if T f (x) # (), then
NF () # {0} . So we have only to prove that if 97 f () = 0, then N7 (x) = {0}.
Note that from (2.4) we always have 0 € Ny (z). Let us show that N (z)\ {0} C
09T f (x). To this end, let z* € N7 (2)\ {0} and suppose that (z*,y —xz) > 0.
Choose d € X such that (z*,d) > 0. For any ¢t > 0 one has (z*,y + td — ) > 0; hence
fy+td) > f(x). Letting ¢ — 0 and using radial continuity we get f (y) > f (z),
that is, * € 997 f ().

(ii) The second assertion follows from the following inclusions:

971 (x)\ {0} € Ny () \ {0} € N§ () \{0} € 9" f(x).



412 A. DANIILIDIS, N. HADJISAVVAS, J.-E. MARTINEZ-LEGAZ

The proof is complete. ]

PROPOSITION 8. Suppose that f is lsc and satisfies one of the following condi-
tions:

(i) f is convex;

(ii) f is quasiconver and for all a > inf f the sublevel sets S, (f) have nonempty
interior.

Then

af = 9f.

Proof. 1t follows directly from Definition 5 that 99 f C 0 f. To show that equality
holds, consider any z* € 9f (). Suppose first that * # 0. Then (2.8) and (2.3)
entail that * € Ng(z); hence * € 07 (z). If now z* = 0, then obviously z* €
df () N Ny (z). According to Definition 5 it suffices to ensure that N (z) # {0}.
Indeed, if = is a global minimum, then NV f< (x) = X*. If = is not a global minimum,
then f cannot be convex; hence assumption (ii) holds. It follows that the convex
set S]f(x) has a nonempty interior. Thus by the Hahn-Banach theorem there exists
y* € X*\ {0} such that (y*,z) > (y*,2’) for all 2’ € ij(w). We now conclude that
y* € Nf (2), ie, Nf (z) # {0}. ]

Remark. The same proof shows that Proposition 8 (ii) holds without any assump-
tion on the sublevel sets, in the case of X finite-dimensional.

Note that if f is Isc, quasiconvex, and radially continuous, then S, has a nonempty
interior for all a > inf f. This is a direct consequence of the following proposition.

ProposiTIiON 9. If f is quasiconvez, lsc, and radially continuous, then it is
continuous.

Proof. Since f is lsc, it suffices to show that ST is open. For any z € S5, let b
be such that f (x) < b < a. Since f is radially continuous, for any y € X we can find
e > 0 such that |z — ey, x + ey[ C S, . Hence z € algint S,. For closed convex sets
in Banach spaces the algebraic and the topological interior coincide (e.g., [7, p. 139]).
It follows that z € int S, C int S°. Hence S5 is open. O
The following lemma is in the same spirit.

LEMMA 10. Let K C X be closed. If algint K # (), then int K # (.

Proof. Let x € algint K. Then obviously

Un(K—x)zX.

neN

By Baire’s lemma, there exists ng € N such that int (ng (K — x)) # 0. We conclude
that intK # 0. O

We are now ready to state the following result.

PROPOSITION 11. Let f be Isc, and suppose that either f is radially continuous,
or dom (f) is conver and S, has nonempty interior for all a > inf f.

(i) If the set {x € X : N} (x) # {0}} is dense in dom (f), then f is quasiconvex.

(i) f is quasiconvez if and only if the domain of 01f is dense in dom (f).

Proof. (i) To show that f is quasiconvex, it suffices to show that S, is convex for
all a with inf f < a < 4o00. For this it is sufficient to show that any x € X\S, can
be strictly separated from S, by means of a closed hyperplane. By Lemma 10, both
assumptions imply that int S, # (). Choose any y € int S,,.

Case 1. Suppose that f is radially continuous. Then the restriction of f on the
line segment [z,y] takes all the values between f (x) and f (y). Hence there exists
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z € |z, y[ such that a < f () < 4+o00. In particular, z € dom (f), so (by assumption)
we can find ¢* € N7 (¢)\ {0}, where c is as close to z as we wish. Since f is Isc we
may assume that f(c) > a and ¢ €]z, y’[ for some y' € intS,. Using (2.4) we now
obtain

(c*,d) > 0= flc+d) > flc).

For all w € S, we have (¢*,w — ¢) < 0 (otherwise we would have f (w) > f(c) > a).
In particular, (¢*,w —c¢) <0 for all w € y' + B. (y/) for a suitable ¢ > 0. It follows
easily that (c¢*,y’ — ¢) < 0, hence (¢*,z — ¢) > 0. Summarizing,

(¢, w) < (c",c) < {(c",x) VweSY,.

Consequently, ¢* separates strictly S, and x.

Case 2. Suppose that dom (f) is convex. If z ¢ dom(f), then we can strictly
separate = and dom(f) by means of a closed hyperplane. In particular, the same
hyperplane strictly separates x and S,,.

If € dom(f), then [y,z[ C intdom (f). Since S, is closed and = ¢ S,, there
exists z € Jy, z[ such that a < f(z) < +o00. As in Case 1, it now follows that x and
S, can be strictly separated.

(ii) If f is quasiconvex, then by Proposition 8 we conclude 97f = 9f. Hence
(by Theorem 4) dom(97f) is dense in dom (f). Conversely, if dom (99f) is dense in
dom (f), then the set {z € dom (f) : Nj (z) # {0}} is dense in dom (f); hence by (i)
the function f is quasiconvex.

Combining Proposition 8, Proposition 11, and Theorem 4, we obtain the following
corollary.

COROLLARY 12. Let f be an Isc radially continuous function (respectively, f is
an lsc function with convex domain and its sublevel sets have nonempty interior).
Then the following are equivalent:

(i) f is quasiconver;

(i) 99f = Of;

(i) 01f satisfies the conclusion of Theorem 4 (mean value theorem);

(iv) dom(01f) is dense in dom (f).

3.1. Comparison of 9?9 with other subdifferentials. We start with the fol-
lowing result.
PROPOSITION 13. For any lsc function f,

(3.1) oFMfCoif Cof.

Proof. The second inclusion follows directly from Definition 5. To prove the
first inclusion, consider any z* € 9FM f(x). It is straightforward from (2.3) that
z* € Ny(z) C Ny (x). Note also that N7 (z) # {0} (if #* = 0, then (2.1) implies that
N7 (x) = X*). Hence (3.1) follows from Remark 2. d

Remark 14. In view of Proposition 8, the inclusion 07f C df becomes an equality
if the function f is quasiconvex and continuous, while both inclusions in (3.1) become
equalities if the function f is convex.

We shall further compare 99 with the subdifferential 99 introduced recently in
[11, Definition 2.1]. Before recalling the definition of the latter, we provide a result
concerning the representation of lsc quasiconvex functions by means of quasiaffine
functions. We recall that a function f is called quasiaffine if it is both quasiconvex
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and quasiconcave. In contrast to the rest of the paper, in the next proposition we
allow the functions to take the value —oo.

PROPOSITION 15. A function f : X — RU{+00,—o0} is lsc quasiconvex if and
only if it satisfies

f(z) = supq(x),
q€Q

where @Q is the set of continuous quasiaffine minorants q : X — RU {+o00, —o0} that
are differentiable on ¢—* (R).

Proof. The “if” part of the statement is obvious, since all continuous quasiaffine
functions are lsc quasiconvex, and this class is closed under pointwise suprema. To
prove the “only if” part, let f : X — RU{+o00, —0c0} be lsc quasiconvex and define
g: X — RU{+o0} by g(x) = e/®) (using the conventions et> = 400 and e~> = 0).
It follows that g is quasiconvex and nonnegative. Combining [8, Theorem 5.15] with
implication (ii)=-(i) in [8, Theorem 5.1], we conclude that g is the pointwise supremum
of the collection of its real valued, differentiable, quasiaffine minorants with bounded
derivatives. It follows that g is also the supremum of a collection of continuous
nonnegative quasiaffine functions, which are differentiable at all points where their
value is positive. Let us observe that f(x) = In g(x) (with the conventions In0 = —co
and In +o0o = +00) and that the logarithmic function

In: [0, +00]— RU {+00, —c0}

is continuous, differentiable on ]0, +00[, and increasing. The proposition follows from
the observation that the composition ¢ = Ino r of In with a continuous quasiaffine
function r which is differentiable at all points  such that r(z) €]0,+oo[ yields a
continuous quasiaffine function ¢ differentiable on ¢! (R). a

Given an lIsc function f : X — RU{+oo}, let us recall the definition of the
subdifferential 09 f given in [11], as follows. The subdifferential 9% f(x) of f at
x € dom(f) is the set of all * € X* such that for some nondecreasing differentiable
function ¢ : R — R (depending on z*), with ©(0) = 0 and ¢’(0) = 1, the following
relation holds:

(32) fy) = fla) + e((a",y —x)) VyeX.

Let us observe that the right-hand part of the above inequality defines a differentiable
quasiaffine support function of f at x (i.e., a differentiable quasiaffine function g
satisfying f > g and f(z) = g(x)). Therefore 0% f(x) is contained in the set of the
derivatives at = of the differentiable quasiaffine supports of f at z.

PROPOSITION 16. Let f : X — RU {400} be lsc, and suppose that OF f C Of.

(i) If x* is the derivative of a continuous quasiaffine support of f at x differentiable
at z, then x* € 0f(x).

(i) 09 f(x) C 07 ().

Proof. (i) From Theorem 2.31 of [8] it follows that a continuous function h : X —
R is quasiaffine if and only if there exist y* € X* and a nondecreasing continuous
function ¢ : R — R such that h = ¥ oy*. Thus if h is a quasiaffine support of f at x,
and z* is the derivative of h at x, then z* = ¢'((y*, z))y*. Since h is a support of f
at x, we obviously have z* € 9% f (z); thus x* € df ().

Let us first assume that z* # 0. Let y € X be such that (z*,y — x) > 0.
Since z* € df (z) and h is quasiconvex, using (2.8) we conclude that f(y) > h(y) >
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h(z) = f(z). Thus y ¢ S]f(z)(f), which proves that z* € Ny (x) C N7 (z). Hence
z* € Of(x) N Ny (z) = 09f(x).

Suppose now that z* = 0. Then obviously z* € 0f (x) N Ny (z); hence it suffices
to show that N (z) # {0} . This certainly holds if  is a global minimum of f. If
this is not the case, then y* # 0. Let us prove that, in this case, y* € Nf< (z). Indeed,
for y € S5, (f) one has ¥((y*,y)) < f(y) < f(z) = »((y*,2)), whence, as ¢ is
nondecreasing, (y*,y) < (y*, z).

(ii) This portion of the proof follows directly from (i) and (3.2). ad

3.2. Other properties of the subdifferential §9. In this section we establish
calculus rules for the quasiconvex subdifferential 7. Let us first remark that inside
the class of Isc quasiconvex functions whose sublevel sets have nonempty interior, the
quasiconvex subdifferential 97 inherits calculus rules from the abstract subdifferential
0; see Corollary 12. On the other hand, for any lIsc function f, Definition 5 yields the
following necessary condition for global optimality:

(3.3) [ has a global minimum at 2y = 0 € 97f(zo).

Remark. Thanks to Proposition 8, relation (3.3) holds true also for local minima
whenever f is lsc quasiconvex, and for all @ > inf f the sublevel sets S, (f) have
nonempty interior.

Let us further show a calculus rule based on the “supremum,” an operation im-
portant in quasiconvex analysis.

PROPOSITION 17. Suppose that O is either the upper Dini subdifferential oP" or
the Fréchet subdifferential OF. Let {fi}icr be a family of Isc functions on X, and set
f =sup,cr fi- Then for every xo € X

(3.4) @ | | 0 (o) | €0 (o).

i€l(xo)

where I(xo) == {i € I : fi(xo) = f(z0)} and " (K) denotes the w*-closed convex
hull of K.

Proof. Let xg € X. If zg ¢ dom (f), then for all i € I(xg), fi(zo) = f(zo) = +00
and 97f (z9) = 97f; (x9) = 0. Hence we may suppose that zy € dom (f). Let us
observe that 07f (x¢) is a w*-closed and convex subset of X*. Thus it suffices to
show that if 2* € U;cr(y,) 07fi (z0), then z* € 09f (z). To do so, let i € I(zo)
and z* € 97f; (wp). Since 97f; (xo) # 0, we deduce that N (zo) # {0}. Using the
fact that f(zo) = fi(xo) and f(z) > fi(z) for all z € X, we obtain N (zo) # {0}.
Thus it remains to show (see Definition 5) that z* € 8P f (x0) N Ny (zo) (resp.,
x* € 9% f (x0) NNy (x0)). But this follows easily from the fact that Ny, (zo) C Ny (o)
and 97" f; (w0) € 07" f (xo) (resp., 0" fi (x0) € 0" f (o). O

Remark. (i) Relation (3.4) holds true whenever 0 is an abstract subdifferential
satisfying df (xg) C dg (x¢), whenever f(xg) = g (x¢) and f < g.

(ii) Equality in (3.4) is generally not true, even if f is the supremum of two
continuous quasiconvex functions. Indeed, let

B V—zx ifz <0,
fl("””){ —Vz ifz>0,
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and fo = —fi. Then f(z) = max{fi(2), fa(z)} = /|z| and 97(0) = R, while
91f1(0) = 91f2(0) = 0.

Let us give a special case where (3.4) holds with equality. Suppose that {f1, f2,... ,
fx} is a finite family of locally Lipschitz quasiconvex functions on X that are regu-
lar (resp., strongly regular) at xo; that is, 9P fi(zo) = 0°f;(x0) (vesp., OF f;(wo) =
0° fi(xo)), where 0°f;(zo) stands for the Clarke subdifferential of f; at zo [3]. If
f = max f; and z* € 97f (), then obviously z* € 9°f (z¢); hence by [3, Proposi-
tion 2.3.12] 2" € co(U,¢(s) 9°fi(20)). Thanks to Corollary 12(ii) and the regularity
(resp., strong regularity) of each f;, we infer that 9°f; (xg) = 97f; (zo), so equality in
(3.4) follows.

A more general result is given in the following proposition.

PROPOSITION 18. Let f = max;ey fi, where {fi}ics is a finite set of lsc quasi-
convex functions such that for all a > inf f; the sublevel sets S, (f;) have nonempty
interior, and let xo € X. Further, let O be the upper Dini subdifferential, and assume
that for alli € I andd € X

(3.5) fiD+ (xo,d) = sup {{z*,d) : ¥ € Of; (x0)} .

(This condition is in particular satisfied whenever f is reqular, or (Pshenichnyi) qua-
sidifferentiable at xo with nonempty subdifferential.) Then

(36) @w* U a1 f; (xo) =01f (1‘0),

i€1(xo)

where I(xg) :={i € I: fi(xo) = f(zo)}.
Proof. Thanks to Proposition 17, we have only to show the right-hand side inclu-
sion “2”. Let us suppose, in seeking a contradiction, that there exists

zt e d'f (wo)\e | |J 0 (w0)

i€l(xo)

Then by the Hahn—Banach theorem there exist d € X and € > 0 such that for all z* €
0" (Uier(ag) 9fi(20)) we have (z*,d) > (2*,d) +¢. Since I is finite, it can be easily
shown that there exists i € I such that fP" (zq,d) < fiDJr (zo,d). Our assumptions
imply (see Proposition 8(ii)) that Of; (z¢) = 07f; (x¢). Since 07f (xg) C Of (o), we
get a* € Of (xg); that is,
P (20,d) > P (2o, d) = (a*,d) > (2*,d) +¢ V2" € Bfi (x0).

This clearly contradicts (3.5). 0

Note that whenever X is finite-dimensional, the assumption on the sublevel sets
is superfluous (see the remark after Proposition 8). The following example shows that
the assumption that the family is finite cannot be overcome, even if all f; are convex
and the supremum is actually a maximum at each point.

Example. Let f: R — R be the convex function

0 if 2 <0,
f(:c){ r+ 22 if0 <z
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For each n € N, let g,, (z) be the equation of the straight line which is tangent to the
graph of f at (1/n, f(1/n)), and let x,, €]0,1/n[ be the intersection of this tangent
with the z-axis. Let us define

0 if v <z,
fo(@)=9 gn(x) fz,<zx< %’
flz) if 71L <.

Then f, is convex, f(z) = max,>1 f (z) for each z € R, and 97f,, (0) = {0} while
91f (0) = [0,1]. Hence (3.6) does not hold.

In what follows, we shall show that 97 obeys a chain rule. We start with the
corresponding rule for classical subdifferentials.

PROPOSITION 19. Suppose that O is either oP" or oF  let f: X — RU{+o0},
and suppose that g : RU {+o0} — RU {+o0} is nondecreasing.

(1) If g is differentiable at f (zo) for some xo € dom(f), then

(3.7) g’ (f (x0)) 0f (w0) € D (g o f) (wo)-

(ii) If, moreover, f is convex and g’ (f (x¢)) > 0, then (3.7) holds with equality.
Proof. (i) Assume first that 0 = P Let a < fP° (x0,d). It follows from (2.5)
that for any 6 > 0 there exists 0 < t < ¢ satisfying

f(xo+td) — f (x0)
t

Hence f (xo +td) > f (z0) +at and g (f (zo +td)) > g (f (xo) + at). Since g is differ-
entiable at f (o) it follows that
9(f (x0) +at) = g (f (z0)) + g’ (f (x0)) at + o (at),

where lim; o 22 = 0. Hence

> a.

which yields (g o f)D+ (x0,d) > ag’ (f (z9)). Consequently,

g (f (20)) 12" (z0,d) < (g0 /)P (w0, d);

hence (3.7) holds.
Assume now that 0 = 9% and take any x* € 9F f (x4). Then

liminff (xo +u) — f (x0) — (=", u
[l N0 [l

>20.

Let a < 0. Then there exists § > 0 such that for all w € X with |Ju|| < 6

f(xo+u) = f(z0) — (2%, u)

il

> a.

Since g is nondecreasing, the previous inequality implies

9(f (o +u)) = g (f (xo) + (2%, u) + a[ul)),
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and since g is differentiable at f (o),

9 (f (w0 +u)) = g (f (o)) + 9" (f (x0)) ((&", w) + allull) + o (=", u) + aul),
where lim;_q @ = 0. Since (||z*]| — a) [Ju| > [{=*,u) + a|ul||, it follows that

(38)  liminf 90 @0+~ (g0 1) (w0) — g’ (f (x0)) (")
' lull N0 [l

> ag' (f (z0))-

Since the above relation is true for all a < 0, the left-hand side is nonnegative. This
implies that ¢’ (f (w0)) z* € 0F (g o f) (z0); hence (3.7) holds.

(ii) Suppose now that f is convex. Then the function ¢t — f (zo + td) is right
differentiable; hence the same holds also for the function ¢ — (g o f) (zo +td). It
follows from the usual chain rule for differentiable functions that

(3.9) g (f (20)) £ (wo,d) = (g 0 /)P (20, d).

Hence if & = 9P, then (3.7) holds with equality.

Suppose now that 9 = 9%, It is sufficient to show that if z* ¢ 9 f(x¢), then
g (f(zo))z* & 0¥ (g o f)(z0). Since f is convex we have 0 f = 9FM f; hence from
(2.1) there exists u € X such that f(xo+ u) — f(20) < (z*,u). Choose a < 0 such
that

(3.10) flxo+u) = f(wo) < (%, u) +allull.

Convexity of f guarantees that the function ¢t — w
all ¢ > 0. Thus for any 0 < ¢ < 1 we infer from (3.10) that

is nondecreasing for

fxo+tu) = f (z0) < ({27, u) + alul]) .
Since g is nondecreasing we obtain
9(f (0 + tu)) < 9. (z0) +1 (&) + ta Jul))
and, since ¢ is differentiable at f (zg),
g (f (xo + tw)) < g(f (x0)) +tg’ (f (x0)) ({27, u) + allull) + o (t {z", u) + ta[[ul),
where lim;_,q @ = 0. Dividing by ¢ ||u|| and letting ¢ — 0 we deduce

(go f)(xo+tu) —(go f)(w0) — g' (f (x0)) (x*, tu)
[[tul]

. . < / )
hmtl{% < ag' (f (x0))
Since a < 0 and ¢’ (f (zo)) > 0, it follows that the left-hand side of (3.8) is negative.

Hence g’ (f (w0)) 2* € 07 (9o f) (z0). [
PROPOSITION 20. Let f : X — RU {400} belsc and g : RU {+00} — R U {+00}
be nondecreasing. Assume that the subdifferential O satisfies assertions (i) and (ii) of

Proposition 19 (for instance, 0 = 0 or 6D+). If g is differentiable at f (xo) with
g (f (z0)) > 0 for some xo € dom(f), then

(3.11) 9" (f (20)) 0 f (wo) € 07 (g0 f) (o)

the above inclusion becomes an equality whenever f is conver.
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Proof. Since g is nondecreasing and ¢’ (f (z¢)) > 0, we can easily deduce that

(3.12) N7 (w0) = Nyy 4 (o)
and
(3.13) Ny(zo) = Nyos(xo).

Thus, if z* € 09f (x(), then (3.12) yields Ngfjf(xo) # (. Since 97f C 9f, we infer
from (3.7) that

g (f (x0)) 2™ € D(go f) (o).

Besides, since z* € Ny(xo) and Nyor(xo) is a cone, (3.13) implies

g' (f (x0)) 2" € Ngog(xo).

Hence (3.11) holds.

If now f is convex, then, by Proposition 8, 97f = 9FM f = 9 f. Hence, in order to
show the equality in (3.11), we have to show that 97 (g o f) (xo) = d(go f) (x0). It
suffices to show that if 2* € 9 (g o f) (zo), then 2* € 97 (g o f) (zo). Since (3.7) holds
with equality, we have

*

i a
7 @) € 0f (wo) = 0°f (x0).
Hence Ny (z9) = Nf (z9) # {0} and (since Ny (zo) is a cone) 2* € Ny (x) =
Nyos (x0). It follows that z* € 99 (g o f) (zo). a0

Let C' C X and let us define the (upper Dini tangent) cone Tp+ (C,xg) of C at
xg € C as follows:

Tp+ (Coxo) ={ue X :36>0: Vt €]0,8[, xo +tu € C}.

We have the following proposition.
PROPOSITION 21. Let f : X — RU{+oc} and zo € f~ (R). Then

{z* € X* : (2%, =1) € Nepi s (w0, f (20))} € 9f (x0)
C{z* € X*: (2*,—1) € (Tp+ (epi f, (zo, f (0))))’} .

Proof. The first inclusion follows from (3.1) and the observation that
OF M f (wo) = {z* € X*: (2%, ~1) € Nepi f (2o, f (w0))}-
To prove the second inclusion, since 97 C 9 C 9 * it suffices to show that
0" f (x0) = {a* € X* : (2%, —1) € (Tp+ (epi f. (w0, f (20))))°}-

To this end, let z* € 9P f (). For any (u,v) € Tp+ (epi f, (xo, f (x0))) there exists
6 > 0 such that

[ (@o +tu) < f(wo) +tv
for all ¢ €]0, ¢[. It follows that

<.T}* u> < limsup f (-TO + tu) - f ($0) <
) = ~p 1 >

)
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Le., (z*,—1) € (Tp+ (epi f, (w0, f (20))))".

Conversely, let z* € X* be such that (z*,—1) € (Tp+ (epi f, (zo, f (70))))°. For
cach u € X, set v = fP° (zo,u). Then for any A €]v, +oo] we can find § > 0 such
that for all ¢ € ]0, 6]

[ (o +tu) — f (20)

<A
: <
It follows that (u,\) € Tp+ (epi f, (zo, f (z0))), and hence (z*,u) < A. Since this is
true for all A €]v, 400, we deduce that (z*,u) < v; hence z* € 9P f (x). d

Let us finally state the following corollary.
COROLLARY 22. Let A C X and denote by 64 : X — RU{+o0} the indicator
function of A defined by

0 ifxeA,
balz) = { too ifrd A

For all g € A we have
8‘16,4 (1‘0) = NA ($0)
Proof. We have the following equivalencies:

¥ € 0F"Mo 4 (v0) & Vo € X, (x%, 2 — 20) < 6a (z) — 64 (20)
SVre A (%, —x9) <0< x* € Ny (x9).

Hence (3.1) implies that Na (xg) € 0704 (zo). Conversely, if z* € 9964 (), then
x* € Ns, (z9). It is very easy to see that Ns, (z9) = N4 (x0), and the corollary
follows. ad
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1. Introduction

Inrecent years, generalized convex functions appear naturally in optimization prob-
lems, forming a large domain for possible — but not always apparent — extensions
of known results of Convex Analysis [6], e.g. Their particular interest in research
stems from the fact that these functions usually enjoy remarkable stability prop-
erties, which are not shared by the class of convex functions (see, for instance,
[12, 24]), while on the other hand, they retain important properties of convex
functions.

The notion of quasiconvexity is one of the oldest and classical concepts in gen-
eralized convexity. Quasiconvex functions can be defined in mere geometric terms
by postulating the convexity of their sublevel sets. Due to its simple definition this
class is often the starting point of the investigations in generalized convexity (see
for example [14, 15, 23, 27], etc.). At the same time, the class of quasiconvex
functions (or eventually interesting subclasses of it as, for example, the class of
the semistrictly quasiconvex functions) meets a large domain of applications in

* The research of the second author was supported by the TMR post-doctoral grant ERBFMBI
CT 983381.
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Mathematical Economy (see [1, 9] and references therein) and recently in Control
Theory ([7, 8)).

Concurrently a great number of generalized monotonicity concepts have been
introduced (originated by some works in complementarity problems, see [20]). In
case of differentiable functions, these definitions are chosen to be appropriate to
guarantee a correspondence between the generalized convexity of a function and
the generalized monotonicity of its derivative [31].

After the recent developments in the subdifferential theory of convex analysis
and its extensions to the class of lower semicontinuous (in short Isc) functions
(see [4] and reference therein) there has been an effort to establish these dual
characterizations of the various classes of quasiconvex functions in terms of the
generalized monotonicity of their subdifferentials (see [19] for the Lipschitzian
case, and [3, 21, 2, 26] and [17] for the Isc case). This interest was motivated by
the fact that the subdifferentials of convex functions are monotone operators.

In the meanwhile a different line of research has been developed in the area
of Generalized Convexity. In this line, which was mainly originated by the recent
work of Borde and Crouzeix [10], one treats the generalized convex functions by
considering and exploiting the notion of the normal cone to the sublevel sets (or
strict sublevel sets) of the function, see also [25]. In [10] the authors presented some
interesting continuity properties of this normal cone when it is applied on the class
of quasiconvex functions, and they subsequently anticipated that this approach was
more apt in the framework of generalized convex analysis, by arguing on some
analogies with the generalized derivative of convex functions. In the same spirit
Penot [25] showed how this notion is related to some known, and largely used
in generalized convexity, subdifferentials of ‘nonlocal’ nature (as for example the
subdifferentials of Plastria, of Greenberg-Pierskalla, etc.), revealing in this way a
different aspect of the topic. Thereafter, it follows rather naturally that the normal
cones of the sublevel sets of a functignform a ‘normal’ multivalued operator
Ny, which could eventually play the role of a subdifferential; moreover for this
operator one can now anticipate that it could accomplish many needs in Quasi-
convex Analysis. However this approach has an — a priori — disadvantage; namely
under the originally given definition, this ‘normal’ operator is always (cyclically)
guasimonotone for every functiof.

This paper aims to overcome the aforementioned inconvenience. By slightly
modifying the original idea of Borde and Crouzeix [10], we obtain here a new
(but strongly related to the already existent) notion of a normal operator, the quasi-
monotonicity of which actually characterizes the classes of continuous quasiconvex
functions. We are also able to provide similar characterizations for the classes of
(semi)strictly quasiconvex functions by means of the (semi)strict quasimonotonic-
ity of this ‘normal’ multifunction. The main difference in our approach is the fact
that the normal cone is not applied directly to the sublevel sets (as was the case in
[10, 25]), but it is considered to the Clarke tangential cone of them. This provides
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us the possibility to explore the properties of the latter cone, especially the fact that
it is always closed and convex.

The results of this work can be partially considered as a confirmation of what
was conjectured in [10], i.e. that this cone normality technique is rather naturally
related with the quasiconvexity.

The paper is organized as follows: in Section 2 we fix our notations and we
define the ‘normal operator’; in Section 3 we establish characterizations of qua-
siconvexity, semistrict quasiconvexity and strict quasiconvexity in terms of the
corresponding monotonicity properties of the normal operator. Finally, in Section
4, we show that, under additional assumptions, these characterizations can be ob-
tained by replacing the normal operator by the ‘strict normal operator’, a notion
based on the strict sublevel sets of the function.

2. Preliminaries

Let X be a Banach spacg&;* its topological dual and, -) the duality pairing. For
any functionf: X — R U {400} its sublevel sets (resp. its strict sublevel sets) will
be denoted by, (f) ={x € X : f(x) <A} (resp.S, (f)={xe X : f(x) <
A}). However the simplified notatiof, (resp.S; ) will also be used whenever no
confusion is possible. For any C X, we denote by ind its interior and by alA)
its closure. If§ > 0 andx € X, we will denote byB;s(x) the open ball centered at
x with radiuss. Forx,y e X we set{lx, y] ={tx+ (1 -1y :0<r < 1} and we
define the segments, y], [x, y[ and]x, y[ analogously.

Let us recall that for any nonempty subgebf X and any pointc of X, the
Clarke tangent cone (cf. [11], e.g.) 6fatx is defined by

Ve >0,38§ >0,37 >0 suchthat
Vx' € Bs(x)NC,Vt € (0, T), (x' +tB,(d)NC #0

and the corresponding normal coNe (x) by
Ne(x) ={x"e X* : (x*,d) <0, Vd € Tc(x)}.
Essential and well known properties of the Clarke tangent cone are the following

dETc(X)<:>{

— Tc(x) is a closed convex cone,
— if C is convex, the Clarke tangent cone coincides with the classical Bouligand
tangent cone, that is,

Te(x) = cI<U A(C — {x})).

A>0
We are now in position to define the main tool of our paper. Borrowing heavily

from ideas developed in [10], we associate to any lower semicontinuous function
f: X = RU {400} a multivalued operatoN,: X — 2% defined as follows:

v Nsp () if x e domf,
Np(x) = {VJ otherwise
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In the sequel we will often use the temmormal multifunctioror normal opera-
tor in order to refer to this operator.

This normal multifunction is a natural extension of the corresponding concepts
developed in Borde and Crouzeix [10]. Indeed, in that paper, a normal operator
N (x) was defined to be the set of alt € X* such that(x*, y — x) < 0 whenever
f(») < f(x). Hence if the function is quasiconvex both concepts coincide.

However, as recently observed in [25, Prop. 18], the normal operator defined in
[10] is always (cyclically) quasimonotone. Under our definition, the latter happens
only if the function f is quasiconvex, and it is exactly in this case that the normal
operatorN s enjoys almost all the nice properties of the operator introduced in [10].
On the other hand this passage through the tangential cone provides an efficient tool
to treat the general case, since one can now exploit the convexity of this latter cone.

3. Normal characterizations

In this section we establish ‘normal’ characterizations for the class of quasiconvex
functions (Subsection 3.1) and for the classes of semistrictly and strictly quasicon-
vex functions (Subsection 3.2), in terms of the normal multifunctignIn the last

part (Subsection 3.3) we show by means of a simple example that this ‘normal’

duality technique is no longer useful in the convex case. By a second example of
the same spirit, we provide a negative answer to the eventual question of integrating
the normal operator.

From now on we shall always assume that the functfois at least lower
semicontinuous (in short Isc). A functiofi is called radially continuous if, for
anyx, the restriction off to any segment throughis continuous at.

We recall the definition of the Clarke—Rockafellar (in short CR) subdifferential
d“Rof a Isc functionf, see [29]:

IRf(x) = {x* e X*: (x*,d) < fl(x,d) foralld € X},

where

f1(x,d) = suplimsup inf }(f (y+1td)— f ().

>0 N0 d’€Bg(d)

Yy X

It is recalled that ~\ O indicates the fact that> 0 andr — 0O, whilex — ; xo
means that both — xg and ' (x) — f(xo).

Another useful subdifferential is the lower Hadamard subdifferential (also called
contingent or Dini-Hadamard)? , which is defined as follows:

M fx)y={x*eX*: (x*,d) < f (x,d) foralld € X},
where

1 (x, d) = Iim\ionf %(f (x +1d') — f (x)).

d'—d
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Finally we say that a Banach space admits a Gateaux-smooth renorm if it admits
a renorm which is Gateaux differentiable &n\ {0}. Classical examples of such
spaces are separable Banach spaces and reflexive Banach spaces.

Before proceeding to the normal characterizations of the quasiconvex functions,
we prove the following useful lemma:

LEMMA 3.1. LetC be a nonempty closed subsefénd lety,- be its indicator
function(i.e. ¥c(x) =0, if x € C andyrc(x) = +o0, if x ¢ C). Then

(@) Ny (x) = Ryrc(x), for anyx € X.
(b) Consider any € C andd € X. Then the following statements are equivalent:

(i) wl(x, d) = +oo,
(i) d ¢ Te(x),
(i) 3x* € Ny (x) : (x*,d) > 0.
Proof. (a) Let us first suppose thate C. Let x* € 3°Ryc(x) andh € X. If
(x*, h) > 0 theny/.(x, h) > 0. But, since

1 _)Hoo, ifd & Tc(x),
Ve .d) = {0, if d € Te(x) @

(see [29], e.g.) we obtain thatg Te (x), i.e.x™ € Ne(x) = Ny, (x).

On the other hand, if € C andx* € Ny, (x) = N¢(x), then(x*, h) < 400 =
Yo, h) if h & Te(x) and (x*,h) < 0 = /(x,h) if h € Te(x). Therefore
x* € 3Ry (x). If now x ¢ C then bothN,,. (x) andd“Ryrc(x) are empty.

(b) The implication (i)= (ii) is a direct consequence of (1). (& (iii) can
be easily proved by applying a strong separation argument to the closed convex
subsetd(x) and{d}. Finally, (iii) = (i) follows from (a). O

3.1. QUASICONVEX FUNCTIONS

Let us now recall that a functiorf: X — R U {400} is called quasiconvexf
its sublevel sets; are convex subsets &f. We also recall that a (multivalued)
operatorF is calledquasimonotongon a nonempty subsé) if for all x, y € K,
x* € F(x) andy* € F(y) we have

<X*vy_x> >0:><y*vy_'x> 20

As mentioned in the introduction, quasiconvexity has the following dual char-
acterization in terms of its subdifferential:

THEOREM 3.2. Let f: X — R U {+o0} be a Isc function. We considérto
be either the CR or the lower Hadamard subdifferential the latter case we
should also assume that is a Banach space with a Gateaux-smooth rejorm
The following are equivalent:

() The functionf is quasiconvex.
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(i) The operatoRf is quasimonotone.

For a proof, see [2]. Note that in the second case, since Gateaux and lower
Hadamard subdifferentials coincide on the class of locally Lipschitz functions, we
conclude thaX also admits a lower Hadamard smooth renorm (in the sense of [5]).

Remark.(1) As a direct consequence of Lemma 3.1 and Theorem 3.2 we obtain
C is convex <= u — N¢(u) is quasimonotone

providing thatC is a closed subset d&f. It follows that a functionf is quasiconvex

if, and only if, for anyx € X, the mapping: — N, (1) is quasimonotone.

But this easy characterization will be of no use in this paper since our aim is to
characterize quasiconvexity by the quasimonotonicity of one mapping (and not of
a familly of mappings).

(2) Clearly, the forthcoming characterizations of generalized convexity do not
follow from the corresponding subdifferential characterizations. Indeed, the rela-
tions betweenV; and classical subdifferentials (lik&R £, 34" f, .. .) are not sim-
ple even if the function is supposed to be Lipschitz and quasiconvex. For example,
considering the functiorf (x) = x° we have

IRf(x) ENs(x), VxeR

and con€d“Rf(0)) = {0} ¢ N;(0) = R, whereas forg defined byg(x) = x if
x < 0andg(x) =0if x > 0 we obtain

N (0) = {0} S9°Rf(0) = [0, 1].

(3) In [17] it was shown that, under the assumptions of the previous theorem,
af is not only quasimonotone, but also cyclically quasimonotone, in the sense that
for everyxy, xo, ..., x, € X, we have

min sup (x/,xi41—x;) <0
i€{l,2,...,n} xfedf(x;)

(wherex, 11 := x1). As shown in [17], the latter notion refines essentially the notion
of quasimonotonicity and in fact is an intrinsic property of the subdifferential of a
guasiconvex function. As we shall see in the sequel (see Theorem 3.3), this property
still holds for the normal multifunctioV , of a quasiconvex functiorf.

Itis easily seen that a functiofiis quasiconvex if and only if for ak € dom f
the functiony, is (quasi)convex (wherg, denotes the indicator function of the
subsetS ¢ (y)).

THEOREM 3.3. Let f: X — R U {+00} be a lower semicontinuous function.
Consider the following statements:

() f is aquasiconvex function.
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(i) x,y edomf, x* € Ne(x) and(x*,y —x) > 0= f(x) < f(y).
(iif) Ny is a cyclically quasimonotone operator.
(iv) Ny is a quasimonotone operator.

Then we always hav@ = (ii) = (iii) = (iv). Moreover if, eitherf is contin-
uous or,X admits a Gateaux-smooth renorm, then we also l{aye= (i), hence
all these four conditions are equivalent.

Proof. (i) = (ii) Indeed, if for somex* € Ny (x) = Ng,, (x) we have(x*, y —

x) > 0, theny — x is not an element ofs, , (x). SinceSy ) is convex, the Clarke
tangent cond’,,, (x) coincides with the Bouligand cone(l, o A(Ssu) — {x})
and consequently cannot be an element 6f(,,. Hencef (x) < f(y).

(i) = (i) Take any finite family {x4, ..., x,} of points of X and suppose
that fori € {1,...,n}, there existst} € N;(x;) such that(x}, x;41 — x;) > 0
wherex, 1 = x1. The contradiction immediately occurs since from property (ii)
we obtainf (x1) < f(x2) <--- < f(x,41) = f(x1).

(i) = (iv) is obvious.

(iv) = (i) Let us suppose (for a contradiction) théis not quasiconvex, i.e. for
somexp € dom f the functiony,, is not quasiconvex. In view of Theorem 3.2 this
implies that the operatdi“Ry,, is not quasimonotone. Hence there exisy <
dom,y, = Srag), X* € 3R, (x) andy* € 3Ry, () satisfying(x*, y —x) > 0
and(y*,x —y) > 0.

Let us first suppose that is continuous.

CLAIM. We havef(x) = f(y) = f(xo).

[We obviously havef(x) < f(xo). Let us now suppose that(x) < f(xg).
Then we may findS > 0 such thatf(u) < f(xo) for all u € Bs(x). It fol-
lows that the functiony,, is locally constant onx, which contradicts the fact
that (¥,,)"(x, y — x) > 0. We thus conclude that(x) = f(xo). The equality
f(x0) = f(y) can be proved in the same way.]

Since nowyr,, = ¥, = V¥, x* is an element 0dRy, (x) = 3Ry, (x), thus
by Lemma 3.1(a)x* € N/ (x). We similarly conclude that* € N,(y), furnishing
thus a contradiction to the quasimonotonicityNof.

Suppose now thaX has a Gateaux smooth renorming. Then by Theorem 3.2
we conclude thad” v, is not quasimonotone, i.e. there existy € domy,, =
Stigy x* € 37 Y (x) and y* € 37y, (y) satisfying (x*,y —x) > 0 and
(y*,x—=y) > 0.SinceSs) S Sr(xy, it follows thatyr,, (-) < ¥, (-). We easily con-
clude thaty™ (x, d) < ¢ (x,d) forall d in X, henced” v, (x) € 37 . (x).
Hencex* € 8% ¢ (x) € 8%y, (x) and by Lemma 3.&* ¢ Ny (x). Similarly
y* € Ns(y), hence we obtain again a contradiction. a

Remark.(1) Implication ‘(i) = (iv)’ has also been proved in [25].

(2) The last part of the proof of Theorem 3.3 essentially provides all necessary
arguments for establishing an analogous statement in terms of the Bouligand nor-
mal cone to sublevel sets, associated with the lower Hadamard subdifferential. In
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such a case a regularity assumption on the space (i.e. Gateaux smooth norm) has to
be imposed, but in return, the assumptionforan be weakened (from continuity to

Isc). However in several results in the sequel where this remark applies (for exam-
ple in Theorem 3.4), a continuity assumption pis needed (independently of the
considered concept of normal cone), so that a consideration of the Bouligand nor-
mal cone (instead of the Clarke normal cone) would yield more restrictive results.

3.2. SEMISTRICTLY AND STRICTLY QUASICONVEX FUNCTIONS

We now recall the definitions of semistrict and strict quasiconvexity. A function
fi X - RU{+o0} is said to be

— semistrictly quasiconvex f is quasiconvex and for any, y € dom f we have
fx) < fO) = f@ < fy), Vze lxyl

— strictly quasiconvexf f is quasiconvex and for any, y € domyf and any
z € lx, y[ we have

f(@) <max{f(x), f(»}

From a geometrical point of view if a functiofi is strictly quasiconvex, then
its epigraph does not contain any horizontal part (including segments) whereas
if it is semistrictly quasiconvex, then all ‘full dimensional horizontal parts’ of its
epigraph correspond to points where the infimal value of the function is attained.
These two classes meet many applications in Multicriteria Optimization (see for
instance [1, 6, 9, 30]).

Let now K be a nonempty subset &f. We recall from [22, Def. 5.1] (see also
[16]) the following definitions:

A multivalued mapF: K — 2¥ is said to be

— semistrictly quasimonoton@n the seX), if F is quasimonotone oR and for
all x, y € K andx* € F(x) we have

(x*,y—x)>0=3ze€lx+y)/2,y[, 3z € F(z) : (z",y—z) > 0.

— strictly quasimonotonéon the setX), if F is quasimonotone oR and for all
x,y € K we have

dzelx,yl, 3z € F(z) : (%, y —x) #0.

Itis easy to check (cf. [16, Prop. 4.1]) that every strictly quasimonotone operator
is semistrictly quasimonotone.

In [16] it was shown that the (semi)strict quasiconvexity of a locally Lipschitzian
function is characterized by the (semi)strict quasimonotonicity of its Clarke—
Rockafellar subdifferential. In the following theorem we show that this is also
the case for any continuous function, if we consider the normal multifunétipn
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instead of the subdifferentialf of the function, thus pointing out again that the
normal operator is an efficient tool in quasiconvex analysis.

THEOREM 3.4. Let f: X — R U {+o0} be Isc and continuous on its domain
dom f. Then the following statements are equivalent:

(i) fis asemistrictly quasiconvex function.
(i) x,y e domf, x* € Ny(x)and(x*,y —x) > 0= f(z) < f(y), Vz €

[x, y).
(i) Ny is a semistrictly quasimonotone operator @om f.

Proof. (i) = (iii) Let us suppose thaf is semistrictly quasiconvex. From The-
orem 3.3 we conclude tha¥, is a quasimonotone operator. Assume now that
x,y € domf andx* € Ny(x) satisfy (x*,y — x) > 0 and take any point
z €l(x 4+ y)/2, y[. According to Theorem 3.3(ii) we havé(x) < f(y). Since
the function f is semistrictly quasiconve, it follows that ¢ S.,. Since now
St is closed and convex, there exists- 0 such thatBs;(y) NS¢y = <. This,
together with semistrict quasiconvexity gfyields:

conv({z} U Bs(y)) N Sy = {z}. 2

Now the first part of the proof is complete singe— z is not an element of
Ts,.,(z) and therefore according to Lemma 3.1 there exjSte N, (z) satisfying
(z*,y —x) > 0.

(i) = (i) Assume thatN, is a semistrictly quasimonotone operator. Then
Ny is in particular quasimonotone, hence by Theorem 3.3 we conclude tisat
quasiconvex. Let now, y € X andx* € N(x) be such thatx*, y — x) > O.
Applying again Theorem 3.3(ii), we get(x) < f(y). From the definition of
semistrict quasimonotonicity, we may conclude (see also [16, Prop. 3.1]) that there
exists a dense subsbtof the line segmenitx, y[, such that for alt’ € D, we have
(", y —7') > O for somez™* € N¢(z).

Hence for every: € [x,y) there existx’ € D andz™* € N;(z') such that
z € [x,Z]and{z”*, y — 7/) > 0. From Theorem 3.3(ii), we immediately obtain
f() < f(y) and thus, by quasiconvexity of, f(z) < Max{f(x), f(z)} <
Fy.

(i) = (i). Assumption (ii) clearly implies condition (ii) in Theorem 3.3 and thus
the quasiconvexity of'. Let nowx, y € domf such thatf(x) < f(y). We will
show that for any, € ]x, y[, we havef (z) < f ().

We first note that due to the continuity g¢f, there is no loss of generality to
assume thaf (x) < f(z) foranyz € ]x, yl.

Now let us fix an elemerg < ]x, y[, such thatf(z) < f(y). We may again
suppose (with no loss of generality) thatz) < f(z’) for anyz’ €]z, y[. Since
St is a closed convex subset &fwith nonempty interior we can separate (in a
large sense) the sefs;, and]z, y]. Hence there exigt' € X*\ {0} anda € R such
that (z*,z') > « > (z",x") for all z/ €]z, y] and allx” € Sy). It follows easily
that(z*, z) = «, hence we may conclude théte N,(z) and(z*,y —z) > 0.
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We claim that the equalityz*, y — z) = 0 is impossible. Indeed, suppose that
(z*, v) = (z*, 2). Then we also hav&*, x) = (z*, z). On the other hand, for any
u € Sy, we have(z*, u) < (z*, z). Thus sincex is an interior point ofS ;) which
maximizesz*, we deduce that* is constant ors sz, which means that* = 0, a
contradiction.

Thus(z*, y — z) > 0 and by hypothesis (iif (z) < f(y) for everyz € [z, y[.

By combining f(x) < f(z) and the quasiconvexity of, we getf(z) <
f@) < f(y) foreveryz € [x, z] and therefore the proof is complete. O

The radial continuity assumption is an — a priori — weak assumption comparing
with (full) continuity. However ifX is a Banach space it has been proved in [18]
(extending a previous result of Crouzeix [13] in finite dimension) that every Isc ra-
dially continuous quasiconvex functigfi X — R U {400} is actually continuous
on its domain.

PROPOSITION 3.5 [18]Let X be a Banach space anft X — R U {400} be
a quasiconvex, Isc and radially continuous function. Theis continuous on its
domain.

If we assume thaX admits a Gateaux-smooth renorming then, using the above
result, we can replace the continuity assumption by ‘radial continuity’ in the state-
ment of Theorem 3.4, concluding to the following corollary.

COROLLARY 3.6. Let X be a Banach space with a Gateaux-smooth renorm
and /: X — RU {400} be alsc and radially continuous function. The following
statements are equivalent:

() f is semistrictly quasiconvex and continuousdmm £
(if) Ny is a semistrictly quasimonotone operator @om f'.

Indeed, if N/ is semistrictly quasimonotone then, according to Theorem/3.3,
is quasiconvex and by Proposition 3.5 it is also continuous. The semistrict quasi-
convexity is now a direct consequence of Theorem 3.4.

Remark.The following example shows that there is no hope to characterize
semistrictly quasiconvex functions by the semistrict quasimonotonicity of the nor-
mal operatorV if the function is only assumed to be lower semicontinuous.

Indeed, consider the functioft R? — R U {400} defined by

lx| + |yl if x|+ [yl <1,
|y —24/1—x2+42 if |x] <1andx?+ y%/4 > 1,
S, y) =1 +00 if x| > 1,
Iyl +lx] =1 ,
+1 otherwise.
21— x2 — 1+ |x]|

Since the sublevel sets gf are closed and convey, it follows th#tis quasicon-
vex and lower semicontinuous. Moreover one can also verify that this function is
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in particular semistrictly quasiconvex. However the associate opehgtas not
semistrictly quasimonotone: indeed, consider for example the p&ints (1, 0)
andY = (1, 1). We have

Ny (X) = {MUr + 22Uz with Aq, 22 > 0, Uy = (1, 1) andU; = (1, D)}
while
N;(Y) = R{X}andV Z € |X, Y], N, (Z) = R{X). 0

Let us now state the following result concerning the class of strictly quasiconvex
functions.

THEOREM 3.7. Let f: X — R U {+0o0} be Isc and continuous aiom £

Then f is strictly quasiconvex if and only ¥, is strictly quasimonotone on
domf.

Proof. Assume first thay is strictly quasiconvex. By Theorem 3.3, we have that
Ny is quasimonotone. Lat, y be any two points of donf andx be any element of
1x, y[. Without loss of generality we can assume tliat) < f(y). Letz € 1x, y[
be such thatf (x) < f(z) < f(y). Arguing as in the first part of the proof of
Theorem 3.4 we conclude that there exists N (z) with (z*, y —z) > 0, hence
in particular(z*, y — x) # 0.

For the converse implication let us assume tNatis strictly quasimonotone.
From Theorem 3.3 we have thdtis quasiconvex. Let, y € domf. Then for
somez € ]x, y[ and some* € N,(z) we have(z*, y — x) # 0. With no loss of
generality we suppose that*, y — x) > 0. Then by Theorem 3.3(ii), we get that
f@) < f(y). We have shown thaf cannot be constant on any segmegnty],
hence it is strictly quasiconvex. O

Remark.It is worth noting that, as in Theorem 3.4, the continuity assumption
in Theorem 3.7 cannot be replaced by a lower semicontinuity one. Indeed, it is
possible to modify the functiorf defined in the remark following Theorem 3.4 in
order to get a strictly quasiconvex function such that its associated normal operator
is not semistrictly quasimonotone (and thus not strictly quasimonotone).

On the other hand, we may observe as before that the (full) continuity hypoth-
esis is not needed to state the sufficient part of Theorem 3.7 if we assuné that
admits a Gateaux-smooth renorm. In particular we have the following corollary:

COROLLARY 3.8. Let X be a Banach space with a Gateaux-smooth renorm
and f: X — RU {400} be alsc and radially continuous function. The following
statements are equivalent:

() f is strictly quasiconvex and continuous dom 1.
(if) Ny is strictly quasimonotone atiom f'.
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3.3. ON THE PARTICULAR FEATURE OF THE NORMAL OPERATOR

In this subsection we show that the previous technique of considering the normal
operatorNy, is no longer appropriate if one moves from the quasiconvex to the
convex functions.

Our first example shows that, is not necessarily a monotone operator, even if
the functionf is convex.

EXAMPLE 1. Consider the convex functiofi: R — R defined by f(x) =
| x |. One may easily check that fare R, the corresponding level set§s,, =
[—lx1, [x ], hence

[0, +o0) if x > O,
Ny(x) = {(—00,0] ifx <0,
R if x =0.

Obviously N is a (maximal cyclically) quasimonotone operator, without being
monotone.

In the following example we see that a convex function may share the same
normal multifunctionN s with a quasiconvex (and not convex) one. In particular
one cannot expect any chance to ‘integrate’ a (cyclically) quasimonotone operator
N, even if he knows — a priori — tha{; is a normal operator of some functigh

EXAMPLE 2. Consider the quasiconvex functiofisg: R — R, with

x ifx>0,
f@)=x and g(x):{Zx if x <O.

Note thatf is in particular convex. It follows easily that for everye R, we
haveN;(x) = N,(x) = [0, +00). Actually this equality holds for every strictly
increasing functiory from R to R.

4. Strict normal operator

The previous characterizations are based on generalized monotonicity properties
of the normal cone to sublevel sefg ). A natural question is whether it is possi-
ble to obtain analogous characterizations by considering the normal cone to strict
sublevel setS;,, ={yeX : f(») < f)}.

The corresponding operator considered in [10] was

Nx) ={x*eX*: (x",y—x) <0, Vy e Srnt

In case wherg is quasiconvex, the operatdt enjoys certain continuity properties
([10]) and can be associated with the Dini directional derivatives ([14]).
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However, N is not an appropriate notion for characterizing quasiconvexity, as
shows the example of the following real valued continuous quasiconvex function
f defined oriR? by

_Jmaxx,y} ifx <Oandy <0,
fx, y)—{o otherwise

The strict sublevel seS; o = S; 01 = Sra is reduced tdR,” x R,". Con-

sequently the point$0, 1) and (1, 0) are respectively elements &f(1, 0) and
N (0, 1) and thusN is not a quasimonotone operator.

In order to overcome this difficulty we propose the following improvement for
the operatoiV:

To any lower semicontinuous functiofi X — R U {4+oc0} we associate the
multivalued operatoN ;: X — 2% defined by

¢ if x £ domf,
7 )X if x € Argminf,
rx) = stm (x) if x e cl(Sy,),
{0} otherwise

This definition has a double advantage. Firstly, using this operator we shall be able
to characterize quasiconvexity for continuous functions. Secondly, sinc¥ the
coincide withX* at any point of the subset Argmify Nf inherits the continuity
properties established in [10] fd¥, providing thatf is real valued quasiconvex
and that every local minimum of is a global minimum (or equivalentlyx >
infy £, cl(S;) = S;) since, in this casey; and N coincide. This situation occurs,
for example, whenevef is continuous and semistrictly quasiconvex.

On the other hand, if is such that the subset Argmjhis a singleton or empty
and every local minimum is a global one (for example whengver continuous
and strictly quasiconvex) thelﬁf andN; coincide.

Before establishing the ‘strict normal characterization’ of quasiconvexity, let us
quote the following lemma.

LEMMA 4.1. Let f: X — R be a Isc function. Therf is quasiconvex if, and
only if, cl(S; ) convex for allx € R.

Proof. The ‘only if’ part of the proof is a immediate consequence of the defini-
tion of quasiconvexity.

Suppose now that ¢S, ) convex, for allx € R. Then for allx € R we have

s, =S =Js. (3)
A<p A<l

Since S, C S, C S, and f is Isc we infer that ;) C S, C §,, hence
combining with (3) we conclude

S, =S clJcspnHcl s =5, 4)

A< r<p A<
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It follows that all inclusions in (4) are equalities and tisgtis convex (as increas-

ing union of the convex sets(d, ), for A < w). Sincep is arbitrarily chosen, we
conclude thatf is quasiconvex. a

In the above lemma the Isc assumption cannot be dropped. Indeed, for any dense
subsetD of R let us consider the functiofi: R — R U {+o0} defined by

if x e D,
fx) = {+oo if x ¢ D. ®)

It follows that f is not quasiconvex (unles® = R) and that for allx € R,
cl(S;) is either empty or the whole space (hence convex). Let us also note that the
restriction f |qom ¢ Of f on its domain dony = D is constant, hence continuous.

THEOREM 4.2. Let f: X — R U {+o0} be Isc and continuous on its domain
domf. Then f is quasiconvex if and only izﬁ/f is quasimonotone odom f \
Argmin f.

Proof. (:>) Let us suppose to a contradiction that there exjst € domf \
Argmin f, x* € Nf(x) andy* e Nf(y) satisfying

(x*,y—x)>0 and (y*,x—y)>0.

From the definition of the operatd¥;, we immediately conclude thate cl(Ss,)
andy e cl(S,). Consequently, considering > 0 small enough, one can find

Xe € Spiy N Be(x) andy, € Sty N Be(y) such that

f(x) f

(x*,ye—x)>0 and (y*,x.—y) >0

On the other hande~(x) = s* (x) and, sincef is quasiconvexy, — x is not
an element ofTS- (x) = cI(UbOA(Sf(x) {x})). Thusy, & St and f(x) <
fe) < fO). Usmg the same arguments with x, and y the contradiction is
obtained.

(<) Now assume thaf is not quasiconvex. Then, according to Lemma 4.1,
there exists. > infyx f such that dlS; ) is not convex. Thus the operaizﬁ)‘Fchl(s;)

is not quasimonotone and there exist € domf, x* € 9Ryg - (x) andy* €
3CRWcl(s;)(y) satisfying
(x*,y—x)>0 and {(y*,x—y)>0. (6)

Sincex* andy* are nonzero elements &f*, x andy are not elements of ittl(S; ))
(see for example formula (1)) which contaisis since f is continuous. This im-
mediately yieldsf(x) = f(y) = (andx y & Argmlnf) Then, according
to Lemma 3.1x* € 8¢ wc,(s y(xX) = _(x) = Cl(s ))( x) = Nf(x) In

cI(S )
the same way € Nf(y). Relation (6) implies thaNf is not quasimonotone on
domjy \ Argmin f. O



NORMAL CHARACTERIZATION OF QUASICONVEX FUNCTIONS 233

Remark.It is important to mention that, unlike the case of the operater
there is no hope to obtain the previous characterizatiofi i§ only assumed to
be lower semicontinuous. Indeed, the following real valued fungio®? — R
defined by

maxx, y} if x <Oandy <O,
glx,y) =31 if x > 0andy > 0,
0 otherwise

is not quasiconvex aIthougﬁf is quasimonotone.
This shows thatV, is more apt for the characterization of the different kinds of
guasiconvexity.

THEOREM 4.3. Let f: X — R U {+o00} be Isc and continuous on its domain
dom f. Then the following statements are equivalent:

(i) fis a semistrictly quasiconvex function.
(i) x,y e domf \ Argmin f, x* € Ny(x) and (x*, y —x) > 0

= f(@2) < f(y), Vzelx,yl

(iii) 1\7f is a semistrictly quasimonotone operatordom f \ Argmin f.

Let us first remark that for any semistrictly quasiconvex functfoand any
pointx of dom £\ Argmin f, one hasV,(x) = Ny (x).

Proof. (i) = (iii) is a direct consequence of implication @ (iii) of The-
orem 3.4. Indeed, iff is continuous and semistrictly quasiconvex, theépn is
semistrictly quasimonotone on dgfnand thus on donf \ Argmin f, subset on
which N, andN; coincide.

(i) = (ii) Hypothesis (iii) implies thatN; is quasimonotone on doyh \
Argmin f and thus, according to Theorem 4,2js quasiconvex.

Now letx, y € dom f\ Argmin f andx* € N(x) be such thagx*, y —x) > 0.
Actually x* € NS;<X)(X) andy — x ¢ TS}m x) = cI(UbOA(S;(X) — {x})) which
implies thatf (z) < f(y), Vz € [x, y].

Let us suppose that there exigtse [x, y[ such thatf(u) = f(y), for any
u € [Z,y]. According to [16, Prop. 3.1], one can find €1z, y[, z2 €lz1. Y[,
73 € N¢(z1) andzj € Ny (zp) verifying

(z1,z2—2z1) >0 and (z5,y —z2) > 0. (7)

Since f(z2) = f(y) > infx f, this immediately implies that, € cl(S,).
Thus there exists a sequentg)iey C AT converging toz,. From (7) we
deduce that fok large enough we haves, z5 — z1) > 0 and then, using again
the quasiconvexity of , f(z2) = f(z1) < f(z5) which is impossible.

(ii) = (i) Assumption (ii) implies thal\?,~ is quasimonotone on dogf\ Argmin f
and thus, by Theorem 4.2, thatis quasiconvex.
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To prove the semistrict quasiconvexity ¢f it suffices to modify the part (ii)
= (i) of the proof of Theorem 3.4. Let us suppose (without loss of generality) that
x, y € domf are such thay (x) < f(z), for anyz € ]x, y]. Due to the continuity
of f, one can fink € 1x, y[ such thatf(z)) > f(z), foranyz’ €]z, y] andz is
not a local minimum of the restriction of on the segmentx, y]. Now using a
separation argument with the subsgtsy] ands ), we deduce (as in the proof of
Theorem 3.4) the existence of € NS;@ (z) satisfying(z*, y — z) > 0. Sincez is
an element of c{lS;@), 7" e Nf(z) and, according to hypothesis (iij{z) < f(y),
for all z € [z, y[. Now the proof is complete since, using the quasiconvexity ,of
the previous inequality holds for ale [x, y[. a

THEOREM 4.4. Let f: X — R U {400} be Isc and continuous atom f. Then
f is strictly quasiconvex if and only ¥ ¢ is strictly quasimonotone atiom £

Proof. Assume thatf is strictly quasiconvex. Then Argmifiis a singleton or
empty and, as it has been already observég,and N, coincide. According to
Theorem 3.7N, (and thusl(ff) is strictly quasimonotone on doyh

The proof of the converse implication follows the same lines as the last part
of the proof of Theorem 3.7. Indeed, according to Theorem A.i3, semistrictly
quasiconvex. We now observe that Argnfins at most a singleton. Indeed,f
y are distinct elements of Argmifi, then the fact thatV,(x) = 1\7f(y) = X*
contradicts the quasimonotonicity &f So letx, y € domf. Then we can find
X,y €lx, y[ such thalx, y] N Argmin f = @. Now invoking Theorem 4.3(ii) the
proof can be completed as in Theorem 3.7. a
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1 Introduction

The notion of a “normal cone to sublevel sets”, i.e. a multivalued oper-
ator associating with every function f and every point z of its domain the
normal cone to the sublevel set Sy(,) has first been introduced and studied
in [5], where the authors discussed continuity properties of this operator (or
variants of it) when applied to quasiconvex functions. Subsequently, several
authors used this notion (see [13], [10], [11] e.g.) for dealing with quasiconvex
optimization problems.

In [4], a modification on the original definition ([5]) of the normal operator
has been proposed, consisting in considering for every x the polar cone of
the Clarke tangent cone of Sy, at x. This new definition coincides with
the previous one whenever the function f is quasiconvex, whereas it has the
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advantage to allow simple characterizations of various types of quasiconvexity
in terms of corresponding types of quasimonotonicity of the normal operator.

In this work, following the lines of [4], we give an axiomatic formulation for
the concept of normal operator, based on an abstract notion of subdifferential,
see Section 2. Subsequently, we present some applications in quasiconvexity
(Sections 3 and 5) and in pseudoconvexity (Section 4).

Throughout this paper, X will be a Banach space with dual X*, and f
a lower semicontinuous (Isc) function on X with values in IR U {+o0}. For
any € X and any z* € X* we denote by (x*, x) the value of the functional
x* at the point x. We also use the standard notation: Bs(z) for the closed
ball centered at x with radius § > 0, dom f := {z € X : f(x) # +oo} for
the domain of the function f and Sy, = {2’ € X : f(2') < f(2)} (resp.
Sty = {z/ € X : f(«') < f(z)}) for the sublevel and the strict sublevel sets
of f. For z,y € X we set [z,y] = {tz + (1 —t)y : 0 < ¢ < 1} and we define
the segments |z, y|, [z,y[ and ]z, y[ analogously.

2 Abstract subdifferential and normal operator

Let us first recall from [2] the definition of an abstract subdifferential.

Definition 1. We call subdifferential operator, any operator d associating to
any Banach space X, any lower semicontinuous function f : X — R U {+o0}
and any x € X, a subset df(x) of X*, and satisfying the following properties:

(P1) 9f(z) ={a" e X* : @™y —a)+ f(z) < fy), Vye X},

whenever f is convex;
(P2) 0€ 0f(x), whenever f attains a local minimum at = € domf;

(P3) O(f +9)(x) COf(x)+ dg(x), whenever g is real-valued convex
continuous, and J-differentiable at x,

where g J-differentiable at x means that dg(z) and d(—g)(x) are nonempty.

In the sequel, we shall assume in addition that
o0co' or 9coPt

where 97 is the Clarke-Rockafellar and 9P+ the upper Dini subdifferential.
Let us recall that the definitions:

ONf(z) ={a* € X*: (z*,d) < f1 (z,d), forall d € X}

where 1
f1(z,d) = suplimsup inf —(f(y+td)—f(y)).

>0 t\0  d'eBc(d) t
=

y—p
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and
OPTf(x) ={a* € X*: (*,d) < fPT (2,d), foralld € X}

where 1
fPF (x,d) = limsup - (f (z +td) — f (x)).
o+
It is recalled that ¢ \, 0 indicates the fact that ¢ > 0 and t — 0, while
T — T, means that both x — z, and f(z) — f(z,).
We further recall from [2] the following definition.

Definition 2. A norm ||.|| on X is said to be 9-smooth if the functions of
the following form are 0-differentiable:

T Ag(x) := ZNHH'T - 'Un||2a
n

where 1, > 0, the series ), is convergent, and the sequence (v,) con-
verges in X.

Let us also introduce the notion of an “abstract” normal cone, based on
the subdifferential 0.

Definition 3. Let 0 be a subdifferential operator. For any closed subset C'
of X and any point x € X we associate the normal cone to C at the point x
defined by

[ OYe(x) fxeC
No(w) = { 0 otherwise

where ¢ denotes the indicator function of C' (i.e. Yo(z) =0 if x € C and
+oo if z ¢ C).

For all classical subdifferentials (Clarke, lower and upper Hadamard, lower
and upper Dini, Frechet, proximal...) the subset N (x) is effectively a cone.
Although this property will not be used in the sequel, to be in accordance
with the term “normal cone” of the above definition, we can assume that the
abstract subdifferential fulfills the following property:

For any function f,any A >0 and any x € X, 9(\f)(z) = Adf(x).

Whenever the subdifferential operator is the lower Hadamard subdiffer-
ential 97—, the corresponding normal cone is the classical Bouligand normal
cone defined as follows

NEKco(z)={z* € X* : (2%,d) <0, Vd € K¢(z)} (1)
with

Kc(x):{y:klin;oyk : 3t 0 with z + tpy, € C, Vk € IN}
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On the other hand, if & = 97, then we recover the Clarke normal cone

Ng(x) ={z" e X" : (x¥,d) <0, Vd € Te(x)} (2)
with
deTo(z) o Ve > 0,36 > 0 such that
cl® Va! € Bs(z) N C,Vt €]0,6], (2 +tBe(d)) N C # 0.

We are now in a position to define the normal operator associated with a
function.

Definition 4. Let 0 be a subdifferential operator. For any lower semicon-
tinuous function f : X — IRU{+oc0} we associate a multivalued operator
Ny : X — 2% - called normal operator - defined by

Ns;,,(z) if x € dom f
v { 0 otherwise

Remark: 1) In the particular case 0 = 97, we recover the definition used in
[4] (see relation (2)).

2) Based on the strict sublevel sets (i.e. S, = {z € X : f(z) < A})
an analogous concept of normal operator (called strict normal operator) has
been considered in [4] (extending the original definition of [5]) :

0 if x € dom f
- X* if x € Argminf
Ny(z) = Ncl(S;( ))(:17) if z € cl(Sy,)
{0} otherwise

Since, as showed in [4], the operator Ny is more appropriate than N ¢ for the
normal characterization of the different types of quasiconvexity, the use of
(large) sublevel sets has been preferred for the purpose of this paper.

A natural question immediately arises concerning the relation between
the multivalued operators Ny and df and in particular, the possible equality
between Ny(z) and cone (0f(z)) = {tz* : t > 0 and z* € 9f(x)}. This
equality is not true in general. In fact several counterexamples have been
given in [4] for the case = J'. In the following proposition we shed more
light on this topic.

Let us recall that a function f : X — IR U {400} is called quasiconvez if
its sublevel sets Sy are convex subsets of X. Following [6], a locally Lipschitz
function is said to be regular at a point x, if for any d € X the classical
directional derivative f’(x,d) exists and is equal to the Clarke directional
derivative f°(z,d) defined as follows:

o ()= limsup ~ (f(y+td) — f (4))
tNOT y—a
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Proposition 1. Let f : X — IR U {400} be Isc such that 0 ¢ Of(X).
i) If f is quasiconvez then, for any x € X,
cone(0f(x)) C Ny(x).

ii) Let us suppose, in addition, that f is Lipschitz continuous and O C 0.
If f is quasiconvex or f is reqular, then for any x € X,

Nj(x) = cone(df ().

Proof. For i) let us suppose, for a contradiction, that z € dom f is such that
df(x) ¢ Ny(x) = NKg,(y). Hence there exists y € Sy(x) and 2* € 9f(z)
verifying (z*,y —x) > 0. Let 6 > 0 be such that (z*,u —z) > 0 for all
u € Bs(y). Since f is quasiconvex, it follows (see [3] e.g.) that f(u) > f(z)
for all u € Bs(y). But, since y is an element of S¢(z), y is a local minimum
of f and therefore 0 € df(y) which contradicts the hypothesis.

i1) is a direct consequence of [6, Th. 2.4.7]. O

Remark 1. a) As proved in [14, Lemma 5.3], if 9 is the Fréchet subdifferential,
then assertion ) can be obtained without the assumption “0 & 9f(X)”.

b) In assertion i) of the previous proposition, the Lipschitz assumption
can not be dropped. Indeed, if we define the function f: R — IR by f(z) =
Vz if x > 0 and f(z) = —/—xz otherwise, then for any x # 0, cone(df(x)) =
Ny¢(x), while for = 0 we have 9f(0) = 0 and Nf(0) = [0, +o0].

3 Normal characterizations of quasiconvexity

In this section we establish ‘normal’ characterizations for quasiconvex and
strictly (semistrictly) quasiconvex functions in terms of the abstract normal
operator N. These characterizations have been derived in [4] in the particular
case 9 = 0.

Let us first recall the relevant definitions. A function f: X — IR U {400}
is said to be semistrictly quasiconvezr if f is quasiconvex and for any z,
y € dom f we have

f(x) < fly) = f(2) < f(y), Vz € [z,y[.

Similarly, f is called strictly quasiconver, if it is quasiconvex and for any x,
y € dom f and z €]z, y[ we have

f(z) <max{f(z), f(y)}.

For any subset K of X, let us also recall that a multivalued operator
T: X — 2X" is called quasimonotone on K if for all 2,y € K we have

0" € T(a), (ay—a) > 0= Yy €T(y) ¢ (y',y—2)>0.
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Following [8] T is called cyclically quasimonotone (on K), if for every x1, xa, ..., x,, €
X (resp. x1,xa,...,x, € K), there exists ¢ € {1,2,...,n} such that

(xF, i1 — 2;) <0,Va) € T(x;)

(where z, 41 1= 7).
Furthermore ([7]), the operator T is called semistrictly quasimonotone on
K, if T is quasimonotone on K and for any x, y € K we have

dz* € T(z), (", y—z) >0= 3z E]%ﬂ,y[, dz* e T(z) : (z",y—z) > 0.

Finally T is called strictly quasimonotone if T is quasimonotone and for any
z, y € K we have

Az €la,y[, Iz* € T(z) : (", y—x) #0.
Let us now recall from [3] the following characterization.

Proposition 2. Let X be a Banach space admitting a 0-smooth renorm and
let f: X — RU{+o0} be a lsc function. Then f is quasiconvez iff Of is
quasimonotone.

For the forthcoming characterization we need the following lemmas:

Lemma 1. Let C be a nonempty subset of X. The following statements are
equivalent:
i) C is closed and conver.
i1) The indicator function V¢ is conver and Isc.
iii) The indicator function ¢ is quasiconvex and lsc.

Proof. The proof is straightforward and will be omitted. O

Lemma 2. For any lsc quasiconver function f, and any x € dom(f) we
have:
Ny(z) = NKsg,,, (2)

Proof. For every z € domf, the set C' = Sy, is convex and closed, hence
from Lemma 1 it follows that the function ¢ is convex and lsc. Property
(P1) of Definition 1 implies that di¢c does not depend on the subdifferential
operator. In particular diy¢(z) coincides with the cones defined in (1) and
(2) respectively. O

Theorem 1. Let X be a Banach space admitting a 0-smooth renorm and let
f: X 5> RU{+o00} be a lsc function. Consider the following statements:

i) f is a quasiconvex function.
i) 3a* € Ng(z), (a*,y —x) > 0= f(y) > f(z)

iii) Ny is a (cyclically) quasimonotone operator.
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Then we always have i) = ii) = iii). Moreover if, either 0%~ C 0 and X
admits a Gateauz-smooth renorm or,  C OPT and f is radially continuous
or, d C 01 and f is continuous, then iii) = i), hence all these three conditions
are equivalent.

Proof. i) = ii). Let us suppose that for some 2* € N¢(x) we have (z*, y—x) >
0. It follows from Lemma 2 that N¢(z) = NKs,, (z). Consequently y — x is
not an element of K, (z) = cl(Ux>0A(S() — {2})). Hence, in particular,
y is not an element of Sy, i.e. f(z) < f(y).

i1) = 1iii). Take any finite family {x1,...,z,} of points of X and suppose
that for i € {1,...,n}, there exists « € N¢(x;) such that («},z,11 —a;) >0
where 2,11 = x1. A contradiction immediately occurs since i%) yields f(z1) <
fla2) <o < flapga) = flan).

iii) = i). Let us suppose, to a contradiction, that f is not quasiconvex.
Then from Lemma 1 it follows that for some g € dom f, the function v, =
g w18 DOL quasiconvex.

If 97~ C 0 (and X admits a Gateaux-smooth renorm) then, in view
of Proposition 2, its lower Hadamard subdifferential 0% ~1,, is not quasi-
monotone. Hence there exist x, y € dom )., = Sy(s,), o° € 0" =4, (x) and
y* € 0=, (y) satisfying (z*,y — ) > 0 and (y*,z — y) > 0. Note now
that Sty € Sf(ay), from which it follows that 1z, (-) < 1 (-). We can easily
conclude that ¢~ (z,d) < ¢ (2,d) for all d in X, hence O% 1y, (x) C

O 1), (z). Hence z* € Ny(z) and (similarly) y* € Ny(y) and we obtain the
desired contradiction.

In both other cases, using again Proposition 2, we conclude to the exis-
tence of x, y € dom vy, = Sp(z,), T° € Ohy,(x) and y* € 0vy, (y) satistying
(z*,y —z) >0 and (y*,z —y) > 0.

Now we claim that f(z) = f(y) = f(zo).

[We obviously have f(x) < f(z¢). Let us now suppose that f(z) < f(xo).

If 0 c OP7, then from the radial continuity of f we may find some § > 0
such that f(u) < f(zo) for any element u in the segment (z—4d(y—z), z+5(y—
x)). Then it follows that the function t,, is constant on this segment, which
is not compatible with the inequality (x*,y — x) > 0. Hence f(z) = f(xo)
and for the same reasons f(y) = f(xo).

If now & C 9" (and the function f is continuous), then we may take a
0 > 0 such that f(u) < f(xo) for all v € Bs(z), hence the function vy, is
locally constant on x, which contradicts the fact that (z*,y — z) > 0. Again
we conclude that f(x) = f(z¢) = f(y). The claim is proved.]

Now the proof is complete. Indeed v, = 1, = 1,. Hence, in both cases
z* is an element of 0y, (z) = I, (z) = N, (z) = Ny(z) and y* is an
element of Nf(y) thus furnishing a contradiction with the quasimonotonicity
of Nf. O



8 D. Aussel and A. Daniilidis

Using essentially the same proof as in [4] it is possible to obtain the
following characterizations of semistrict and strict quasiconvexity in this more
general framework. Let us thus state - without proof - these results.

Theorem 2. Let X be a Banach space admitting a 0-smooth renorm and let
f:X — RU{+40o0} be lsc and continuous on its domain domf. Then the
following statements are equivalent:

i) f is a semistrictly quasiconvex function.
i) Jz* € Nyp(z) @ (z*y—x) > 0= f(y) > f(2), Vz € [z,y)

iti) Ny is a semistrictly quasimonotone operator on domf.

Theorem 3. Let X be a Banach space admitting a O-smooth renorm and let
f: X > RU{+o0} be a lsc and continuous on domf.

Then f 1is strictly quasiconvex if and only if Ny is strictly quasimonotone
on domf.

4 Normal cones and pseudoconvexity.

In this section we shall discuss relations between normal operators and
pseudoconvexity. In [1], a differentiable function f was called pseudoconver, if
for every z,y € dom(f) the inequality (df (z),y—x) > 0 ensures f(y) > f(x).
The notion of pseudoconvexity was subsequently extended into non-smooth
functions, based on the concept of subdifferential (see [12], [3]). Let us further
give the definition of pseudoconvexity in an even more abstract setting.

Definition 5. Given an operator T : X — 2% | a function f : X — IRU
{+o0} is called T-pseudoconvex, if for any z,y € dom(f) and x* € T(x), the
inequality (z*,y — x) > 0 implies f(y) > f(x).

In case T := Of, we recover the definition given in [12] (see also [9] for a
summary).

Since Definition 5 of Ny \ {0}-pseudoconvexity and Theorem 1 iz) are
very similar, one may wonder whether quasiconvexity and N \ {0}-pseudo-
convexity differ. It is shown below (Proposition 3) that for some particular
case these concepts coincide. However this is not the case in general, as shows
the example of the function f: R — IR, with

_[Lif jz|<1
The above function is lower semicontinuous and T-pseudoconvex (for T' =
Ny \ {0}), without being quasiconvex.
A more general example of a lsc function satisfying for all x,y € dom f
the property:

Va* € T(z), (*,y —x) > 0= f(y) > f(2), for all z € [z,y] (4)
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without being quasiconvex is given below. (Relation (4) was taken as defini-
tion for T-pseudoconvexity in [9]).

Example: Let us consider the Isc function f : IR? — IR defined by

, if r<0andy>0
0, if zy >0
—x,if £>0,y<0and —y>=x
y,if >0, y<0and —y <z

flz,y) = (5)

It is easily seen that f is Ny \ {0}-pseudoconvex, provided that 9 C 9. On
the other hand, since

Sto.0) = R*\ {(z,y) : ©<0, y>0}
the function f is not quasiconvex.

Proposition 3. Let f : X — R U {+o0} be a lsc radially continuous func-
tion with conver domain. Then

i) f quasiconvex = f Ny \ {0}-pseudoconvez.
ii) if, moreover, X = R" and 0 = 0! then f is quasiconvex iff f is
Ny (z) \ {0}-pseudoconvex.

Proof. i) Let us assume that =, y € dom f and z* € Ny(x) \ {0} are such
that (z*,y — x) > 0. Since a* # 0, there exists d € X such that (z*,d) > 0.
Then for y, =y + %d (with n € IN) we have (z*,y, — z) > 0 which implies,
by ii) of Theorem 1 that f(y,) > f(z). Since f is radially continuous this
yields f(y) > f(z) and f is Ny \ {0}-pseudoconvex.

i1) To prove the converse implication, let us suppose that f is Ny(z)\{0}-
pseudoconvex and (towards a contradiction) z is an element of |z, y[ verifying

f(2) > max[f(z), f(y)].

Since f is radially continuous, we may assume that f(z) > f(y) and that there
exists Z €]z, y[ such that f(x) < f(Z) < f(2). It is also no loss of generality
in assuming that f(u) > f(Z) for all u €]z, Z]. Thus Z is on the boundary of
the closed subset Sy(z) and consequently Ny(Z) contains a nonzero element
Z* (see [6] e.g.). On the other hand, since f(Z) > f(x), we have (a*,2—Z2) <0
for any o* € N¢(2) \ {0}. In particular, (2*,y — 2) > 0 and, according to the
Ny \ {0}-pseudoconvexity, f(y) > f(Z) which is a contradiction. O

We also recall ([8]) that an operator T is called cyclically pseudomonotone,
if for every x1,x, ..., z,, € X, the following implication holds:
i e{l,2,...,n},3xf € T(x;) : (x, 2541 —25) > 0=
Jj €{1,2,...,n},Vaj € T(xy) : (v}, 2541 —x5) <0
(where z, 41 1= 7).
Let us now state the following result, to be compared with Theorem 1.
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Proposition 4. Let X be a Banach space admitting a 0-smooth renorm and
f: X - RU{+o0} be a continuous function. The following statements are
equivalent:

i) f is quasiconvez.

i) Ny \{0} is (cyclically) pseudomonotone.

Proof. i) = ii). Set T(x) = Ny(z) \ {0} for all z € X. Let any finite subset
{x1,22,...,2,} of X and suppose (for a contradiction) that (], xs —21) >0
whereas for all j > 2, and all 2} € T(x;), (x;‘f,xjH —x;) > 0 (where x4 :=
x1). Since z} # 0, using the same arguments as in part i) of the previous
proof, we obtain f(z;11) > f(x;), for j > 2. On the other hand, since (7], zo—
x1) > 0 we infer by Theorem 1 i) that f(x2) > f(x1). The contradiction
follows easily, since x,,41 := x1. Hence T is cyclically pseudomonotone.

1) = 4). This implication follows from Theorem 1 (ii¢) = 1)), since the
pseudomonotonicity of Ny \ {0} obviously implies the quasimonotonicity of
Ny. O

It is well known (see [8] e.g.) that every O f-pseudoconvex lsc function is
quasiconvex. Combining with Proposition 3 ¢) and proposition 1 i) we thus
recover easily the following known result:

Corollary 1. Suppose that f is continuous and 0 ¢ 0f(X). Then
f is quasiconver <= f is 0-pseudoconvex

5 Normally equivalent functions

As observed in [4], two functions with the same normal operator may differ
by more than an additive constant. Nevertheless, using the previous definition
of T-pseudoconvexity (with T'= N\ {0}), it is possible to characterize, under
certain regularity assumptions, the set of quasiconvex functions having the
same normal operator as a given quasiconvex function. This is the aim of
Theorem 4.

Let us first define an equivalent relation on the set of all real-valued
functions on X as follows:

f~g< Ne(z) = Ny(z), Vo e X.

Remark: It follows directly from the definition that f ~ ¢ o f for every
f X — IR and every strictly increasing function ¢ : IR — IR, since the
functions f and ¢ o f have the same sublevel sets.

We now denote by C the class of continuous quasiconvex functions f :
X — IR satisfying the following two regularity conditions:

(a) every local minimum is a global minimum
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(b) the subset
Argmin f:={zx e X : f(z) = i?{ff}

is included in a closed hyperplane of X.

Let us remark that assumption (a) can be rewritten as follows:
(a") For every A € f(X), A>infx f: cl(S)) =S
and that, in finite dimensional spaces, (b) is equivalent to
(t') the subset Argmin f has an empty interior.

Hypothesis (a) has been used in [5] in order to obtain continuity results
for the normal operator.

_ In the following theorem, we characterize the equivalent class, denoted by
f, of a given function f in C.

Theorem 4. The equivalent class f of a given function f in C is the set of
all N¢ \ {0}-pseudoconvex functions, that is

f={g9€C : 3" € Np(x)\ {0} : (z%,y—x)>0=g(y) > g(x)}.

Another way to express this result is to say that a function g of C has
the same normal operator as a given function f of C if, and only if, g is
Ny \ {0}-pseudoconvex.

Proof. Let us denote by Cy the subset of C defined by
Cr={geC : Fz" e Ny(x)\ {0} : (2% y—2)20=g(y) = g(x)}.

(i) Let us first show f C Cj :
Suppose that g € f and let x, y € X and x* € Ny(z)\ {0} = N,(x) \ {0}

be such that
(x*,y —x) > 0. 6

=

If the inequality (6) is strict, then from Theorem 1 we conclude g(y) > g(x).

In case where equality holds in (6), there exists a sequence (y,)n, C X
converging to y such that (z*,y, —z) > 0, for any n € IN. It follows g(y,) >
g(x), which together with the upper semicontinuity of g yields g(y) > g(z).

(i) We shall now show C; C f :

Let any g € Cy.

Step 1: Ny(x) C Ny(z), for all z € X.

Assume, for a contradiction, that there exists € X and * € Ny (z) such
that z* & Ny(x).
Claim: x € Argmin g
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[ Indeed, if = is not an element of Argmin g then, using assumption (a’)
and the fact that z* is not an element of Ny(x), we immediately obtain the
existence of a point y of S;(gﬂ) satisfying (z*,y — ) > 0. A contradiction
occurs since the definition of C; now yields g(y) > g(x). The claim is proved.]

Since x* & Ny(x), there exists § € Sy(,) = Argmin g such that

(x*, 5 —z) > 0. (7)

Obviously

g9(x) = g(y) = ming (8)
On the other hand, z* is an element of Ny(z) and therefore, (7) implies,
f@) > f(x).

Pick now any A in |f(x), f(§)[. Since f is continuous, there exists e > 0
such that

Be(x) C S5 (f)- 9)
Due to the closedness of Sx(f), one can find ¢t €]0, 1] such that

where Cy = {tg + (1 — t)u ; u € Be(x)}. Since int(Cy) # 0, assumption (b)
implies the existence of a point Z € B () such that for § = tg + (1 — )& we
have:

9(9) > 9(y) = g(x) (11)

Thanks to (10), it is no loss of generality to assume that f(z) > f(&) for
all z in |Z,y]. Applying thus a separation argument to the disjoint convex
sets |Z, 7] and Sy (f), we conclude that there exists 2* € Ny(Z) \ {0} such
that (i, 5 — &) > 0.

The definition of Cy now yields g(y) > ¢(Z). The contradiction is obtained,
since, using (8) with the quasiconvexity of g we get g(¢) = ¢g(¥), which is not
compatible with (11). Hence Ny(x) C N,(z), for all z € X.

Step 2: Ny(x) C Ny(x), for all z € X.

We shall also proceed by contradiction. So let us suppose that there exist
z € X and z* € Ny(x) such that z* is not an element of N;(x). This implies
the existence of a point y of Sy, (f) which is not in Sy(,(9), i.e. g(y) > g(x).

Case 1: The interior of Sy, (f) is nonempty.

In this case we claim that there exists z such that f(zZ) < f(z) and
9(2) > 9(a).

Indeed if f(y) < f(x), then take Z = y. Otherwise we have f(x) = f(y),
and thanks to hypothesis (a’) there exists a sequence {y,}n>1 in S;(m)( f)
converging to y. Since g is continuous and g(y) > g(x), the claim follows for
zZ =y, and n sufficiently large.

Now one can separate (in a large sense) the subsets Syz)(f) and {z}.
Hence there exists z* € N¢(z) \ {0} such that

(2%, 2 — ) > 0.



Normal cones to sublevel sets 13

This immediately implies, from the definition of Cy, that g(z) < g(z) which
is impossible.

Case 2. The set Sy () (f) has an empty interior.

In this case we have f(x) = f(y) = min f. We shall conclude again to a
contradiction. Indeed, by hypothesis (b) there exists a* € X*\ {0} such that

Argmin f CHy ={ue X : (a",u—y) =0}

Thus a* € Ny(y) \ {0}, hence according to the definition of Cf, g(z) > ¢(y)
which is impossible.
Consequently Ny coincides with N, and the proof is complete. O

Example: If X = IR, the class C consists of the equivalent classes determined
by the functions fi(z) = z, fa(z) = —z and f34(7) =[x — af (for a € R).
For example, the function defined in Remark 1 is an element of f;.

Remarks: 1. Two equivalent functions f,g € C do not necessarily have the
same family of sublevel sets. Consider for instance the functions f(x) = ||
and g(z) = max{z, —2z}. Note that both functions belong to the class defined
by fs,0 (see the previous example).

2. It is possible to consider quasiconvex functions taking the value +oo. In
this case one can obtain a result similar to Theorem 4 under the assumption
that all functions have the same domain. Without this assumption, the fore
mentioned result is not true, as can be shown by easy counterexamples.
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EXISTENCE THEOREMS FOR
VECTOR VARIATIONAL INEQUALITIES

ARIS DANIILIDIS AND NICOLAS HADJISAVVAS

Given two real Banach spaces X and Y, a closed convex subset K in X, a cone
with nonempty interior C in Y and a multivalued operator from K to 255 ¥) we
prove theorems concerring the existence of solutions for the corresponding vector
variational inequality problem, that.is the existence of some =z € K such that
for every = € K we have A(z —20) € —int C for some A € Tzo. These results

correct previously published ones.

1. INTRODUCTION

Let X, Y be real Banach spaces, K be a closed, convex subset of X and L(X,Y)
be the set of all continuous linear operators from X to Y. Let further T: K —
9L(X,¥) \ {(} be a multivalued operator and C: K — 2¥ be a multivalued mapping
such that for each z € K, C(z) is 2 cone with nonempty interior int C(z). The purpose
of this paper is to study the existence of solutions for the vector variational inequality

problem (VVIP):
(1) 3z, ¢ K: Yz € K, 2A € Tz such that A(z —zq) € —int C(zo).

Incase Y =R, C(z) = R", the VVIP reduces to the well-known variational inequality
problem [13]. The VVIP was introduced by Gianessi [8] for the case ¥ = R™ and was
subsequently studied by many other authors [2, 3, 4, 14, 17] in connection with vector
optimisation. Theorems asserting the existence of solutions of the VVIP are contained in
(3, Theorem 2.1] for single-valued, monotone operators T, where ¥ has a constant cone
C (that is, not depending on z), in (2, Theorem 2.1] for T = single-velued, monotone
operator, where Y is equipped with a non-constant C(z) and in {14, Theorem 2.1] for
multivalued, pseudomonotone operators T', with C(z) constant. However, the proofs
of all these theorems contain a mistake: a certain set defined in these papers in asserted
to be weakly compact, while this is not the case (see Remark 2 at the end of the present
paper for details).

In the following paragraph we prove the existence of a solution of the VVIP for a

multi-valued, monotone operator (9] with constant cone C' (Theorem 3). We also prove
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the existence of solutions for multivalued, pseudomonotone or quasimonctone operators
with values consisting of completely continuous operators.

We now recall some definitions and fix our notation. A cone C in Y is a non-
empty, convex, proper subset of ¥, such that for all A > 0, y € C, we have Ay € C.
The dual cone C* of C is the set of all f in the dual space ¥ such that fly) >0

forall ye C.
If C is closed, then

(2) yeEC & f(y) 20, forall feC~.
On the other hand, if int C # 0, then
(3) yeintC e f(y) >0, forall feC\ {0}

Note that in both cases we have C* # {0}. We refer the reader te [11] for these and

other properties of cones.

Now let C: K — 2Y be a multivalued mapping such that for each z € K, C(z)
is a cone with nonempty interior. A multivalued operator T: K — 2L\ {D) is
called: :

(i) monotone [9], if for all z,y € K and all A € Tz, B € Ty we have
(B~ A)(y—=z) € C(z).

(§) (weakly) pseudomonotone [14], if for all z,y € K and 4 € Tz,
Aly-z) ¢ —intC(z) mehes Bly—z) ¢ —int C(z), for all (for some)
BeTy.

(ii) (weakly) quasimonotone, if for all z,y € K and 4 € Tz, Aly-=z) ¢
—C(z) implies B(y —z) € —int C(z), for all (for some) B € Ty.

It is obvious that (weak) quasimonotonicity is implied by (weak) pseudomonotonic-
1ty, which in turn, is implied by monotonicity. These notions generalise the well-known
corresponding ones for the case ¥ = R [12, 15].

The strong operator topology (SOT) on L(X, Y) is the weakest topology for which
the functions L(X, Y) 2 A = Az € Y are continuous, for every z € X. The multi-
valued operator T is called upper hemicontinuous, if its restriction on line segments 1s
SOT-upper semicontinuous. An operator 4 € L(X,Y) is called completely continuous,
if it maps weakly convergent sequences to strongly convergenf ones [5]. Any compact
operator is completely continuous. The converse is not true, since the identity mapping
in £, 1s completely continuous without being compact [6]. If ¥ is finite-dimensional,
all elements of L(X, Y) are obviously completely continuous operators.

A point zg € K is called an inner point [10] or relative quasi-interior point (1] of

K,if forall f € X*, we have
Vze K, f(z—z0) 20=2Vz € K, f(z —z0) =0.
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In other words, g is an inger poiat of K if every closed hyperplane which supports K

at z, necessarly contains K.

'The set of inner points of & s denoted by inn K. Note that intesior points of A
are also inner points, since i this case the above implication holds vacuously. Iz fact,
whenever int K # 0, it can be shown that int K = inn A'. However, for any separable
K we have inn K # @, even if int K =0 [1, 10]. In 1, 10] it was also shown that
inn K is lineally fullin K, that is for every z € inn K and every y € K, we have
{tz+(1—-t)y:t€ (0, 1]} Cinn K.

Forany SC L(X,Y) and z € X, S(z) will denote the set {Az: A € S}.

2. THE MAIN RESULTS

In what follows, X and Y will be Banach spaces. Unless explicitly mentioned, we
shall always consider. the weak topology on X, the norm topology on Y and the strong
operator topology on L(X, Y). K will be 2 nonempty closed, convex subset of X and
Cc: K —2Y » multifunction, such that C(z) is 2 cone with nonempty interior for each
zc K.'Weset D(z) =Y \(—int C(z)) and for any operator T K — 2L5 100 {0}
we define the multifunctions: :

(4) Gy)={zec K:34¢€ Tz such that A(y —z) € D(z)}
(3) Fy)={z€ K:3BeTy such that B(y — z) € D(=)}.

Let S be the set of all z € K such that relation (1) holds, that s, S is the solution

set of the VVIP. We note that 5= (] G(v).
yeK

 We begin with some lemmas:

——e

LEMMA 1. Let K be (weakly) compact. Then ﬂ Gly) = 0.
yEK

PROOF: According to K. Fan’s lemma (7], it is suficient to show that for any

z =, Azi, with z; € G(z:), A € (0, 1], S Ai=1,wehave z € U G(z;). Indeed,

=1 =1 =1
were this not the case, we would have z ¢ G(z;) for all i’s, so for all 4 € Tz we
would have A(z; —z) € —int C(z). Since —intC(z) is convex, this would imply

0= MA(zi—z)€ —int C(z), 2 clear contradiction. 0

=1

LEMMA 2. Let T be upper hemicontinuous. Then N Fly)C N Gly). I in
yeK yEK
addition, inn K # @ and T has compact values, then () Fly)= [ Fly).
) yEK y€ina K

PROOF: Assume first that there exists = € [) F(y) such that z & [) G(y)-
yEK yeK

Then there would exst y € K such that (Tz)(y —=) —int C(z). Set z, =ty +
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(1—t)z, t € (0,1). Since —intC(z) is open and T is upper hemicontinuous, thera
exists § > 0 such that (Tz.)(y —z) C —int C(z), for all ¢ € (G, 8). Since Hy-z) =
z: — 7 and —intC(z) is a cone, we deduce that (Tz,)(z, —z) € —intC(z), that is
'z & F(z.), a contradiction. This proves the inclusion.

Now suppose that inn K # 0. Suppose that there exists z € 1 F(y) such
y€ina X

that z ¢ (| F(y). Then for some y € K, we would have
yeX
(6) (Ty)(y — z) € —-int C(z).

Since (Ty)(y — z) is compact by assumption, relation (6) implies that there exists ¢ >

such that

(7) (Ty)(‘y —z)+ B.+ B, C —int C(z)

where B, = {z € X: ||z]| < ¢}.
We choose z € inn K and set y, = tz+(1-t)y, t € (0, 1]. Since inn KX is lineally

full, we have y, € inn K, so z € F(y;). We also have

(8) (Tye)(y: —2) S (Tye)(y — 2) + (Tye) (3 — v).

Upper hemicontinuity shows that for ¢ sufficiently small, (Ty:)(y —z) C (Ty)(y - z) -
B.. On the other hand, since T has compact values and is upper hemicontinucus, the
image of any line segment by T is compact; hence, for small ¢t we have: (Ty)(ye —y) =
t(Tye)(z ~y) C B.. Hence, relations (7) and (8 )imply (Ty:)(y: — 2) € ~int C(z), that

1s, = € F(y.), a contradiction. This shows that N Fly)= N F). 0
yeX yE€inn K

LEMMA 3. Suppose that K is compact and for some y € K, T(y) is norm
compact and its elements are completely continuous operators. Suppose further that
the graph of D is sequentially closed in X x Y. Then F(y) is closed.

PrOOF: Let z € _F—'(;)- By Eberlein’s theorem, there exists a sequence (z,) nenN C
F(y) converging to z. Then for any n ¢ N, there exists B, € Ty such that
Baly —za) € D(z,). Since Ty is norm compact, we may assume with no loss of
generality that (B, Jnen DOTM-converges to some B & Ty. Since B is completely
continuous, we have Bz, — Bz, so using a standard argument, we conclude that
Ba(y —2zn) —» B(y—z). The scquéntia.l closedness of the graph of D implies that
B(y —z) € D(z), that is z € F(y), so F(y) is closed. 0

LEMMA 4. Suppose that T is weakly quasimonotone and upper hemicontinuous,

with compact values. Then for all y € inn K we have G(y) S F(y)us.

PROOF: Let z € G(y) be such that z ¢ F(y). We shall show that z € §. The
assumption on z implies that there exists 4 € Tz such that Aly—z) ¢ —intC(z).
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1Y

In addition, 4(y —z) € —C(z), since otherwise the weak quasimonotonicity would
imply that = € F(y). Hence A(y — z) belongs to the boundary of =C(z), so by the
Hahn-Banach theorem there edsts an f € ¥* such that f(A(y—z)) 2 f(z), for all
: & —C(z). Since —C(z) is a cone containing A(y — z), we easily deduce that

(9) (fod)y—z)=02 f(z2), forall z € -C(z)

so, in particular

(foA)(y) =(f < 4)(=)

We now show that
(10) (fod)(z) = (foA)y) > (fo A)z), Vze K.

Indeed, supp’ése to the contrary, that (fo 4)(z) > (fo A)(z) for somez € K. Set
ye =tz + (1 —t)y, t €(0,1). Obviously (foA)(y: —z) >0, forall t € (0, 1), so (9)
implies A(y: —z) ¢ —C(z). Using the weak quasimonotonicity, we get

4

(11) (Ty:)(y: —z) N D(=z) # 0.

On the other hand, z ¢ F(y), which means that (Ty)(y —z) C —int C(z). Using the
same argument as in the second part of the proof of Lemma 2, we conclude that for ¢
sufficiently small we have z € F(y:), a contradiction.

Hence (10) holds. Since y € inn K, we deduce that (fo 4)(z) = (feo4d)(y) =
(fod)(z), Vz€ K; thatis, (foA)(z—2) =0, Vz € K. According to (9), f belongs
to the polar cone of C(z), hence relation (3) implies A(z —z) € —intC(z), for all
ze€ K, thatis, z € §S. : g

THEOREM 1. Suppose that T is upper hemicontinuous and for all y € K, T(y)
is norm compact and its elements are completely continuous operators. Let the graph
of D be sequentially closed in X xY and K be compact. Then in each of the following
cases, the VVIP has a solution:

(a) T is weakly pseudomonotone,
(B) T is weakly quasimonotone and inn K # .

PROOF: (a). If T is weakly pseudomonotone, then for all y € K we have: G(y) C

F(y), so invoking Lemma 3 we get G(y) C F(y). Combining now Lemmas 1 and 2 we

get ‘
0# (VG S Flwc ()G =5,

yEK yEK yEK

hence S is nonempty.
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(B). Let T be weakly quasimonotone. Suppose § = 0. Then Lemmas 3 and ¢4
show that G(y) C F(y), for all y € inn K. Hepce an application of Lemmas ] and 9

gives
22166 N S N F)= (N Fw) < ) ew)=s,
yeEX y€inn K y€ina X yEX vEK
which is a contradiction. Thus § #0. 0

Theorem 2 replaces the hypothesis of (weak!) compactness of K by a coercivity
condition. We assume for simplicity that X is reflexgve. '

THEOREM 2. [et X be a reflexive Banach space. The conclusion of the Theorem
1 stil holds if the assumption “K is compact” is replaced by the following coercivity
condition:
“There exists an R > 0 such that foral z € K, ||z > R, there exists a z ¢ K,
llzll < R, such that (Tz)(z —z) € -C(z).”
PROOF: Define K, = {z e K: |z R}. Then K, is a nonempty, convex,
compact subset of X . |
We consider two cases:
(@ I T is pseudomonotone, then by Theorem ] the VVIP on K, has a
solution zy. By the coeravity condition, there exists a z €K, |z]| < R,
--such that ’

(12) | (Tz0)(z0 - 2) € C(zy)

(if [lzo]| < R, we may take z = z;). Now given z ¢ K, there exists
t € (0,1) such that z, = ¢ - (l —t)z € K;. By the definition of zg,
there exists A € T'zq, such that Az —zg) ¢ —int C(zq). Combining
the latter with (12); we easily deduce that ¢tA(z, — z) + Az - z,) ¢
~int C(z,), that is, A(z — Z9) ¢ —int C(zo). Hence z, is also 2 solution
of the VVIP on K.

(B) Let T be quasimonotone and inn X # 0. Since inn K is Lineally full,
there exists z € inn K such that llz]l < R. Then it is easy to prove that
Z € inn K (see also the proof of Theorem 3.1 in [10]), so inn K, £ 0.
Hence, by Theorem 1, the VVIP on K; has a solution Zo, which is in
fact, as in the previous case, a solution on X . 8

Note that for a pseudomonotone operator T, the assumption of the norm com-
paciness of Ty may be replaced by that of compactness. Indeed, if the latter is the

case, we set

Fi(y)={z € K: (Ty)(y~2) C D(=)}, y e .
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Then obviously
Fi(y) S Fly), Yy e K.

Hence Lemma 2 gives

A< ) 6w
yEXK yEK
An analogous proof to that of Lemma 3 shows that Fi(y) is closed for all y € K.
Finally, the proof of Theorem 1 goes through if we consider Fy(y) instead of F(y).

If the cone C does not depend on = and T is monotone, then the existence of
solutions for the VVIP is a trivial consequence of the analogous theorem for the (scalar)

variational inequality problem, as the following shows:

THEOREM 3. Let T: K — 25XY)\ {0} be a monotone, upper hemicontinuous
operator with compact values and let C be a cone with nonemptyinteriorin Y. Suppose
that K is compact or that X is reflexdve and T satisfles the coercivity condition of

Theorem 2. Then the VVIP

Vy€ K,ZA €Tz such that A(ly—z) ¢ —intC

4

has a solution z on K.
PRroor: Choose f € C*\ {0}. Then the operator fo T: K — 2% \ {0} is
obviously monotone, upper hemicontinuous with w*-compact values, so there exsts a

solution z € K of the variational inequality
Vye K, Zue(feT)(z): (v, y—2z) 20

(see, for instance, [16]). Obviously, v = fo A for some A € Tz and this according
to relation (3) shows that A(y—z) € —intC, that is, z is also a solution for the

VVIP. g

REMARK 1. In the case Y = R, the set of solutions for the (scalar) V.I.P. of the
pseudomonotone operator is known to be convex. This does not hold for the VVIP
even if the operator 7' is constant, as the following example shows: Let X =Y = R?,
C(z) =C =RZ, K = {z € R*: |z]|; <1} and Tz be the identity operator for all
z € K. Then z; = (0, —1) and z; = (-1, 0) are solutions for the VVIP while all

convex combinations of them are not.

REMARK 2. The set F(y) defined by relation (5) is not compact under the assumptions
of Theorem 3, as it is asserted to be in the proof of Theorem 2.1 in 3, 2, 14] (where
it is denoted by F,(y)). Here is a counterexample: Let X =Y = {; and let B be the
closed unit ball. Let (en),cn be the canonical basis of £; and K =e; + B. For each
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=€ K, let C(z)=C, whers C is the cone |J AMe; + (1/4)B). Note that intC £ Q.

A>0
For any y, = in B the scalar product (e; +y/4, &1 + z/4) is pesitive: it follows that
the scalar product of any two elements of C s nonnegative. Hence, C C C7) 5o
in particular intC* # 0. (This was an additional assumption in {3, Theorem 2.1)).
Finally, let T: K — 9L(£1,%3) be such that Tz is the identity operator on ¢; for each
-~ ¢ K. Then T is of course single-valued and monotone. One may immediately check
that F(0) = K \intC. It follows that forall n > 1 we have e; + e, € F(0Q) (indeed,
otherwise we would have e; + e, = Ae, + z/4) for some z € B; this is impossible,
since the norm of (1 — A)e; + e is easily sesn to be greater than A/4). However, e,
is the weak limit of e; + en; on the other hand, since e; € 1nt C, we have e; € F(0),

that is, F(0) is not weakly closed.
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1. Introduction

The study of the existence of solutions of Variational Inequalities on unbounded domains
usually involves the same sufficient assumptions as for bounded domains, together with
a coercivity condition. It is of course desirable to have hypothesis as weak as possible;
for this reason various different coercivity conditions have been proposed. Non-coercive
problems have also been studied.

In a recent article, Crouzeix [5] studied the variational inequality problem in finite
dimensions for multivalued operators which are pseudomonotone in the sense of Kara-
mardian (see [7], [12]). He introduced a new kind of coercivity condition and showed
that the latter is not only sufficient, but also necessary for the set of solutions to be
non-empty and compact (so in this sense coercivity cannot be relaxed). In this article
we extend Crouzeix’s results in infinite dimensions: We show that in reflexive Banach
spaces if the assumptions used for bounded domains hold, then various coercivity con-
ditions introduced in the literature are equivalent to each other, and also to the fact that
the set of solutions is non-empty and bounded. In the finite dimensional case we show
in particular that these conditions are also equivalent to the one introduced in [5].

2. Solution sets of the variational inequality problem and coercivity conditions

In what follows K will be a non-empty, closed and convex subset of a real Banach
spaceX. Let T : K — 2X"\{¢} be a multivalued operator with non-empty values. We
recall thatT is called upper hemicontinuous [1], if its restriction to line segments of

is upper semicontinuous, whek is equiped with thav*-topology. The operatof

is called pseudomonotone (according to Karamardian [7], to be distinguished from the
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notion defined by Brezis [3]), if for every,y € K andx* € T(x), y* € T(y) the
following implication holds:

X, y—x)>0=(y,y—x >0 1)

where(u*, u) denotes the value af* € X* at the poinu € X.
The Variational Inequality Problem (VIP) for the operaibrconsists in finding
x € K such that:

Vye K, ax* e T(X) : (x*,y—x) >0 (2)

The set of solutions of the VIP will be denoted 8yA solutionx € Swill be called
a strong solution, i* in (2) does not depend on The set of strong solutions will
be denoted bysy,. It is well known (see for example [10]) that VIP is closely related
to the following Dual Variational Inequality Problem (DVIP), which consists in finding
x € K such that:

Vye K,Vy e T(y) : (Y, y—x >0 3)

We denote bysp the set of solutions of the DVIP.
The relations betwee§ Sy andSp are given in the following well known propo-
sition. We include a proof for the sake of completeness.

Proposition 1. (i) If T is pseudomonotone, th&c Sp.
(iiy If T is upper hemicontinuous, thé&y € S
(iii) If T hasw*-compact and convex values, thBe= Ss.

Proof. (i) is obvious. For (i), letx € Sp and suppose to the contrary that for some
y € K and allx* € T(x), we have(x*, y — X) < 0. Since in that case the set* € X* :
(X*, y — X) < 0} is aw*-open neighbourhood df(x) andT is upper hemicontinuous,
then settingx: = ty 4+ (1 — t)x and takingt close to zero, we obtain the relation
X,y —x) < 0, for all i € T(x¢). This in particular implies thatx;’, Xt — xX) < 0,
which contradicts the fact thate Sp. Finally, (iii) is a direct application of the minimax
Theorem of Sion [11].

O

In order to show the existence of a solution for unboundedé&gtgrious coercivity
conditions have been used. We single out three of these. Denotifighoythe set of
all weakly compact and convex subsetgfwe have:

JA € R(K),Vx € K\A, VX € T(X),Ay e A: (x*,x—Yy) >0 (C1)
JA e R(K),¥x e K\A,Fye A VX e T(X) : (X", x—Yy) >0 (C2)
FJA e R(K),Vxe K\A Gy e A 3y e T(y) : (', x—y) >0 (C3)

Condition (C1) is standard (see for instance [5]). Condition (C2) is a weaker version
of various coercivity conditions (see [4], [6], [12]). Condition (C3) was recently used
by Konnov [8] to treat the quasimonotone DVIP.
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Remark 1.1t is obvious that conditions (C1), (C2) and (C3) imply respectively that the
(possibly empty) solution se&r, SandSp are included in the weakly compact et

Remark 2.Condition (C2) implies (C1). IfT has convex values, then Sion’s Minimax
Theorem [11] shows that conditions (C1) and (C2) are equivalent. Finally i
pseudomonotone, then (C3) clearly implies (C2).

The idea of the proof of the following Theorem is well known. However, we include
a proof, since this theorem is usually stated (see [12, Theorem 2.3]) under stronger co-
ercivity assumptions and the additional hypothesis that the valuesw*-compact.

Theorem 1. Let T be an upper hemicontinuous, pseudomonotone operator. Suppose
also that (C2) holds. The8 # ¢.

Proof. Let A € 9(K) be the one given by (C2). For every finite subsef K,
the setKg = co(A U F) is a nonempty, convex and-compact subset dk (where
co(A U F) denotes as usual the convex hull of the Aat F). For eachx € Kg we
defineG(x) = {y € Kg : (x*,y — X) < 0,Vx* € T(x)}. The setd5(x) are convex
andw-compact. Ify = Zi”:l A Xi, with Zi”:l A = 1 andA; > 0, then for some we
havey € G(x). Indeed, otherwise for alfs there would exisk* € T(x;) such that
(X, y —x) > 0. SinceT is pseudomonotone, we would infer th@at, y — xj) > 0,
for all y* € T(y), hence 0= 3| ; 2i(y*,y — xi) > 0, a contradiction. By Ky Fan's

Lemmal9, Lemma 1],( G(x) # . Itis obvious that this intersection coincides with
xeKg

the setS(F) of solutions of DVIP for the operatdf in Kg. By Proposition 1,5 F)
also coincides with the set of the solutions for VIPKig. Since (C2) holds, we have in
particular (see Remark 1) th&F) C A.

Let now F1 and F» be two finite subsets dk. Since the se§(F; U Fp) is always
contained in the intersectidg{F1) N S(F2), we conclude by induction that the family of
all weakly compact setS(F) (whereF is a finite subset oK) has the finite intersection

property. Hence (| S(F) # @. Itis straighforward to see that the above intersection
F finite
coincides with the sé&b of solutions of VIP for the operatdr in K.
O

From now on we assume that the Banach spéisereflexive. In this framework we
consider the weakly compact and convexisgt= {x € K : ||x|| < R}. Itis now easily
seen that (C1), (C2) and (C3) can be restated respectively as:

AR > 0,Vx € K\KR,¥x* € T(x),d3y e Kr: (x*,x—y) >0
JR > 0,Vx € K\KR,Jy € Kr, ¥x* € T(X) : (x*,x—y) >0
JR> 0,Vx € K\KR,3y e Kg,Iy" e T(y) : (Y*,x—y) >0

We proceed to show that under the usual assumptioristhiese coercivity conditions
are not only sufficient, but also necessary for the solution set to be weakly compact.
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Theorem 2. Let X be a reflexive Banach space. Supposethiatpseudomonotone and
Sp is non-empty and bounded. Then (C3) holds.

Proof. Let xp € Sp. SetKy = {x € K : ||x|| < n}. If (C3) does not hold, then for any
n € N (in particularn > ||xg|), there existx € K\ Kp, such that for aly € K, and all
y* € T(y), we have

(Y, x—y) <0 4)

Choosez = Axg+ (1 — A)xwith A € (0, 1) andn — 1 < ||z|| < n. Sincexg € Sp, then
foranyy € K, andy* € T(y) we have

(Y. y—%0) =0 ()
which together with (4) implies
(Y, y—2 = 0,Vy € T(y) (6)

Hencez is a solution of DVIP inK,,. Now for anyy; € K\K, we can find ay € Ky,
(y # 2) on the line segment joining and y;. Then (6) implies(y*,y — z) > 0,
vV y* € T(y), hencely*, y1 — y) = 0,V y* € T(y). SinceT is pseudomonotone, we get
(Yi.y1—y) = 0,V yj € T(y1), which in particular impliegy;, y1 — 2) > 0,Vy] €
T(y1), i.e.z € Sp. Given that||z|| > n — 1 andn is arbitrarily chosen, this contradicts
the assumption th&p is bounded.

O

Corollary 1. Let X be a reflexive Banach space amdbe an upper hemicontinuous,
pseudomonotone operator withf-compact convex values. Then each of the conditions
(C1), (C2) and (C3) is equivalent to the fact that theSgtis non-empty and bounded.

Proof. By Proposition 1, we hav8 = Sy = Sp. If S is non-empty and bounded,
then by Theorem 2 condition (C3) holds and so by Remark 2, (C1) and (C2) also hold.
Conversely, if any of the coercivity conditions holds, then by Remark 2, conditions
(C1) and (C2) hold, s& = S is bounded (see Remark 1). By Theorentis also
non-empty.

]

3. The finite-dimensional case

Let K andT be as before. In this section we limit ourselves to the ¢ase R". In [5],
Crouzeix considered the following coercivity assumption:

Koo [ T(K)® = {0} (CR)

whereT(K) is the image oK underT andT(K)® = {d : (x*,d) < 0, Vx* € T(K)} is
the polar cone off(K). Further,K is the recession cone &, which in the case of
a closed, convex set is defined as follows (see for example [2]):

X
Koo:{deR”:d:linmt—n,xneK,tn—>+oo} (7)
n

={deR":a+tde K,vt >0}
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wherew is arbitrarily chosen irkK.
In [5] the following theorem is proved:

Theorem 3. Let T be an upper semicontinuous, pseudomonotone operator with com-
pact, convex values. Then (CR) holds if and on§gfis nonempty and compact.

We intend to show that even if we replace the upper semicontinuity by upper
hemicontinuity, (CR) is equivalent to (C1), (C2), (C3), so Theorem 3 remains true.

Theorem 4. (i) (CR) implies (C3).
(i) If Sp # @, then (C3) implies (CR).
(i) If T is upper hemicontinuous and pseudomonotone, then (C2),
(C3) and (CR) are equivalent.
(iv) If T is upper hemicontinuous and pseudomonotone with convex
values, then (C1), (C2), (C3) and (CR) are equivalent.

Proof. (i) Suppose that (C3) does not hold. Then we can find a sequgngen C K,
with ||xp]l > n, such that for everm € N and ally € K, ||y|| < n, we have

(Y, Xn —y) <0, Vy* € T(y) (8)

We may assume with no loss of generality tlﬂﬁﬁ — d # 0. If to the contrary
(CR) holds, then for somg € K, y* € T(y) we should havéy*, d) > 0. The latter
implies that for sufficiently larga, we get(y*, ﬁ) > %(y*, d), so in particular
(Y*, Xn) = +00, which clearly violates (8).

(i) Let x € Sp, and suppose that (CR) does not hold, i.e. there exists#a0,
d € Ky such that for ally € K, y* € T(y), we have(y*,d) < 0. Lety € K be
arbitrarily chosen. Then for arty> 0, we obviously have

(Y, y— (x+td) = (¥, y—x) —t(y*,d) > 0,Vy* € T(y) 9)

which implies thatx + td € Sp. In particularSpy cannot be bounded, hence (C3) does
not hold (see Remark 1).

(iii) According to (i), (CR) implies (C3); by Remark 2, (C3) implies (C2). Thus we
have only to show that (C2) implies (CR). Suppose that (C2) holds. Then Theorem 1
implies thatS # ¢. By Remark 1, the se® is bounded. By Proposition 1 we have
S= $p. Hence, Theorem 2 implies that (C3) holds. Using (ii), we conclude that (CR)
holds.

(iv) This is an immediate consequence of (iii) and Remark 2.

O

Combining Corollary 1, Theorem 4(iv) and the fact tat = Sp is closed, we get
the following stronger version of Theorem 3.

Corollary 2. LetT be an upper hemicontinuous, pseudomonotone operator with com-
pact, convex values. The®y is nonempty and compact if and only if any of the
conditions (C1), (C2), (C3) or (CR) holds.
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In this paper we consider an abstract subdifferential that fulfills a priori a weak type of a
mean value property. We survey and extend some recent results connecting the gener-
alized convexity of nonsmooth functions with the generalized cyclic monotonicity of
their subdifferentials. It is shown that, for a large class of subdifferentials, a Isc function
is quasiconvex if and only if its subdifferential is a cvclically quasimonotone operator.
An analogous property holds for pseudoconvexity. It is also shown that the subdiffer-
ential of a quasiconvex function is properly quasimonotone. This property is slightly
stronger than quasimonotonicity, and is more useful in applications connected with
variational inequalities.

Keywords: Generalized convexity; generalized monotonicity; cyclically monotone opera-
tors; abstract subdifferential
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1. INTRODUCTION

In recent years a great number of generalized monotonicity concepts
have been introduced. The definitions of these concepts were usually
chosen so that to guarantee a correspondence between the generalized
convexity of a function and the generalized monotonicity of its
derivative (if the function is smooth) or its subdifferential (if it 1s

—
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nonsmooth). This was motivated by the fact that the subdifferential
of a convex function is a monotone operator.

However, the subdifferential of a convex function is also cyclically
monotone. Actually this property is even more fundamental than
monotonicity, since it is well known that an operator is cyclically
monotone if and only if it is contained in the subdifferential of a con-
vex function [1]. In this paper we survey some recent results which
extend —at least partially —this connection to the classes of quasicon-
vex and pseudoconvex functions, by showing that their subdifferentials
are, respectively, cyclically quasimonotone and cyclically pseudomo-
notone. At the same time we extend these results to include not only the
Clarke-Rockafellar subdifferential, but also a large class of “local”
subdifferentials.

We also survey and extend the properties of the “properly
quasimonotone” operators. Proper quasimonotonicity is stronger than
quasimonotonicity but weaker than, say, semistrict quasimonotonicity
and cyclic quasimonotonicity. It is a property that applies to both
single-valued and multivalued operators. Its interesting feature is that
it characterizes the derivatives (or subdifferentials) of the quasicon-
vex functions, and seems to be more apt than quasimonotonicity to be
applied to variational inequalities.

In the sequel X will be a Banach space and X" its topological dual.
We denote by (-,-) the duality pairing. We shall always deal with ex-
tended real valued functions f : X — RU {+oc} with (effective) domain
dom(f)={x€ X : f(x) < +oc}. The function will be called radially
continuous if its restriction to line segments of dom(f) is continuous.
For any x, y € X we shall denote by [x, ] the closed line segment
{tx+ (1 =ty:r<[0, 1]}, while the segments (x,y], [x,v) and (x,y)
are defined analogously. Finally for every x € X and any ¢ > 0 we shall
denote by B.(x) the closed ball centered at x with radius «.

2. SUBDIFFERENTIALS AND GENERALIZED
CONVEXITY

We recall that the Fenchel-Moreau subdifferential 8¥™(x,) of a
function f at a point xy € dom( /') is given by the formula

O"™f(x0) ={x"€ X7 : f(x) > f(x0) + (x", x — x0), Vx € X}.
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This subdifferential was mainly used for convex (usually Isc)
functions. During the last two decades there has been an effort to
generalize the Fenchel-Moreau subdifferential in a way that would be
appropriate not only for convex functions but also for the class of all
Isc functions. To this end, many concepts of subdifferentials have been
proposed (see [2] for a survey). We focus our attention only on “local”
subdifferentials, i.e., those defined by using only local properties of the
function (in contrast to some specific subdifferentials surveyed also in
[2]). In order to increase generality, we shall use throughout this paper
the following definition for the subdifferential concept:

DerFINITION 1 A subdifferential of a Isc function fis any operator
0 which associates to each x € X a subset df(x) of X, and has the
properties:

(a) If fis convex, then 0 = oM.

(b) If x is a local minimum of f, then 0 € 9f(x);

(c) For any v* € X~ one has o( f+v")(x) = 9f (x) +v7;

(d) If x,ye X and f(y) > f(x), then there exists z€[x,y) and seq-
uences (x,) C dom f, (x}) C X*, such that x,— z, x; €9f(x,) and

(x:z+tly—x)—x,) >0, foralls>0.

Properties (a) and (b) are shared by all local subdifferentials. Pro-
perty (d) is a weak form of a mean value property, which —under some
standard regularity assumptions on the Banach space X —is shared by
the majority of local subdifferentials, and in particular by those
included in the definition-scheme of Aussel - Corvellec — Lassonde [3].
The above definition is inspired by [2].

A subdifferential & is said to be larger than a subdifferential 0, if
df(x) €9, f(x) for all x€ X. In this case we shall write 8 C 9. One of
the largest subdifferentials is the dag subdifferential [4], defined as
follows:

Of(x) ={x € X" : (x",v) < fl(x,v) for all v € X}

where

£1(6,) = lim sup— (£ (v + 10v = x = 3)) ~£3)

O™ y—x
yEdomf
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For instance, 9" is larger than the widely used and quite large
Clarke-Rockafellar and upper Dini subdifferentials [2]. In the sequel
we shall often assume that our subdifferential 0 (in the sense of the
Definition (1) is smaller than 9.

During the recent years, there has been an effort to establish an
equivalence (just as in the smooth case [5]) between the generalized
convexity of nonsmooth functions and the corresponding generalized
monotonicity of their subdifferentials. This was initially done for the
Clarke-Rockafellar sub-differential (see [6, 7]), and subsequently for
more general cases [2,8,9]. We first recall the definitions of mono-
tonicity, quasimonotonicity and pseudomonotonicity. An operator
T:X — 2% is called:

Monotone, if for all x, ye X and all x* € T(x), y* € T(y) one has
OF=x"y—x) 20. | (1)
Pseudomonotone, if for all x, y€ X and all x" € T(x), y* € T(y) one has
(x*,y=x)20=("y—x)20 (2)

or equivalently

(x"y=x)>0=("y—x)>0 (3)
Quasimonotone, if for all x, y € X and all x*€T (x), y"€T(y) one has
(x*y=x)>0={"y-x) 20. (4)

Among the many kinds of generalized convexity we shall consider
here only quasiconvexity and pseudoconvexity. The definition of quasi-
convexity is fairly standard: a function is quasiconvex if its sublevel sets
are convex. Quasiconvexity has the following characterizations via the
subdifferential:

ProOPOSITION 2 Let f be a Isc function and 0 a subdifferential.
Consider the following statements:

(1) fis quasiconvex;
(i) If (x*, y—x) >0 for some x"€0f (x), then f(z)< f(y) for all
zelx,yh
(i) Of is quasimonotone.
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Then ()= ()=(1). If 8C 8, then all three conditions are
equivalent.

For the proof of the implications (iii) = (i) = (1) see [9]. The equi-
valence of all conditions under the assumptions & C 8" is shown in [4].
An analogous proposition holds for convexity:

PrOPOSITION 3 Let f be a Isc function. The following are equivalent:

(1) f is convex.
(i) For all x, y € dom(f) and all x* € 9f (x) one has:

(x*,y=x) < f(y) = f(x) (5)
(ili) The subdifferential Of is a monotone operator.

Proof Implication (i) = (ii) follows from the fact that .for convex
functions we have & = 8™™. Implication (ii)=> (iii) is contained in
almost all books dealing with monotone operators, see for instance
[10]. Implication (iii) = (i) is shown in {4]. [ |

In contrast to quasiconvexity, the definition of pseudoconvexity is
not standard, and depends essentially on the given subdifferential.
Here we shall use the following definition:

DEFINITION 4 A lIsc function fis called pseudoconvex (with respect
to a given subdifferential 9), if for every x, y € X, the following impli-
cation holds:

Ix edf(x): (x*",y—x) 2 0=Vz€x,)]: f(z) < F(¥) (6)

An alternative definition of pseudoconvexity was given in [11].
According to that definition a Isc function fis called pseudoconvex, if
for every x, y € X, the following implication holds:

Ix*€df(x): (x7,y = x) 2 0=F(x) < f(¥) (7)
We now compare the two definitions:.

PROPOSITION 5 A Isc function f is pseudoconvex if and only if its
domain dom f is convex and implication (7) holds.

Proof 1If fis pseudoconvex, then it obviously satisfies implication (7).
If dom fis not convex, then there exist x, y € dom fand z€][x,y] such
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that f(z) = +oc. Since f is Isc at =, there exists ¢ > 0 such that
f(z"y>f(») for all /€ B.(z). According to property (d) of Definition I,
there exist ¢ €[x, ) and sequences x, — ¢ and x; € df (x,) such that
(x:,v— xn) > 0. For n sufficiently large, B.(c) intersects (x,, y]. Pick

- € B.()N[x,, v]. Using the pseudoconvexity of f, we deduce that

- f(») > f(£), a contradiction. Hence, dom f'is convex.

Conversely, if a Isc function f has a convex domain and satisfies (7),
then (according to Proposition 2.2 of [12]) fis also quasiconvex. In this
case (7) clearly implies (6), thus f'is pseudoconvex. [ |

Note that from the last part of the previous proof it follows that
every pseudoconvex function is also quasiconvex. This is an interesting
conclusion since it joins two ostensibly different classes: the class of
pseudoconvex functions which is defined via a “‘mixed” property in-
volving elements of the dual space, and on the other hand, the class of
quasiconvex functions which is defined in pure geometric properties of
the function.

The following lemma will be useful in the sequel:

LEMMA 6 Let f be a Isc function such that its subdifferential Of is a
pseudomonotone operator. If x"€0f(x) and (x",y—x) >0, then

S > fx).
Proof There exists € > 0 such that (x", ' —x) > 0 for all y' € B.(y).

" Obviously df is also quasimonotone, hence by Proposition 2 (implica-

tion (iii) = (ii)) we deduce that f(y')> f(x) for all y'€ B.(y). In
particular f(y) > f(x). Suppose that f(3) = f(x). Then y would be a
local minimum of £, hence 0 € 9f () by the property (b) of Definition 1.
This is not possible since it contradicts implication (3). |

Pseudoconvexity of fis also related to pseudomonotonicity of 9f:

PROPOSITION 7 Suppose that [ is a Isc function. Iff is pseudoconvex
and O C O, then Of is pseudomonotone.. Conversely, if f is radially
continuous and Of is pseudomonotone, then [ is pseudoconvex.

Proof The first assertion was proved in [2]. The second one was
also essentially proved in [2] with the only difference that, under
these assumptions, it was merely shown that f satisfies condition (7).
Involving now the fact that df is also quasimonotone, we get that f
is a quasiconvex function. It follows that f'is pseudoconvex. |
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3. GENERALIZED CYCLIC MONOTONICITY

One can strengthen the concept of monotonicity by postulating a strict
inequality (for x#y) in (1) instead of a mere inequality; this leads to
the notion of strict monotonicity. A more important and essentially
different strengthening of monotonicity is cyclic monotonicity. We
recall that an operator 7T is called cyclically monotone if it has the
following property: For every x;,x,,...,x,€ X and every x} € T (x),
x;€T(x2),...,x, €T(x,) one has

n

> (x7 X = x) <0
i=1
(where x,.; = x)).

Monotonicity describes the behavior of an operator along line
segments. By contrast, cyclic monotonicity describes the behavior of
an operator around a cycle determined by a finite sequence of points.
It is well known that the subdifferential 9f of a lIsc, convex function f
(which in this case, according to property (a) of Definition 1 coincides
with 8*), is not only monotone, but also a cyclically monotone
operator.

It is easy to show that in one-dimensional spaces, monotonicity is
equivalent to cyclic monotonicity [13, Chapter V, Example 4.3]. This is
no longer true in more than one dimensions, as shown by the following
easy example of Phelps [10]: the single-valued operator T:R>— R?
with T (xy, x5) = (x3,—x) is linear and positive (hence in particular
monotone); however it is not cyclically monotone.

We shall now define corresponding notions of cyclic quasimonoto-
nicity and cyclic pseudomonotonicity and show that any subdiffer-
ential (in the sense of Definition 1) of a quasimonotone or a
pseudomonotone function has these properties respectively. We begin
with cyclic quasimonotonicity, see also [12].

DEFINITION 8 An operator T:X — 2% is called cyclically quasimo-
notone, if for every xi,x3,...,x,€ X, there exists an i€ {1, 2,...,n}
such that

<x;7xi+l - xi> _<_ O,VX: S T.(x[)

(where x,, .1 =x)).
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Clearly, every cyclically monotone operator is cyclically quasimo-
notone, while every cyclically quasimonotone operator is quasimono-
tone. Cyclic quasimonotonicity is considerably more restrictive than
quasimonotonicity (see Example 11 below). However, this property
characterizes all subdifferentials of quasiconvex functions, provided
they are smaller than 9', as shown by the next theorem.

THEOREM 9 Let f be Isc. If f is quasiconvex and 8 C ', then Of is
cyclically quasimonotone

Proof It is sufficient to show that 8'f is cyclically quasimonotone.
Suppose to the contrary that there exist xj,xs,...,x €dom f and

x; € 0'f(x;).i=1.2,..., k such that (x},x..; — x;) > 0 for all i =1,
g, ..., k, where x| =x,. By Proposition 2, we have f(x;,) > f(x;)
for all ’s. It follows that f(x;) = f(x3) = -+ = f(xp).

From (x},x> —x;) > 0 we deduce that fT(x;, x»—x;) > 0. Hence
there exist sequences y, — x; and ¢, — 07 such that f (y,+t(x2 — y)) —
f(yn)>0. Since y,+ty(x2—Vn)E[yn,x2] and f is quasiconvex,
we deduce that f(y,) <f(x2) =f(x;). On the other hand, since
(x%,x1 — x¢) > 0, for n sufficiently large we have (x},y, — xx) > 0.
Hence, by Proposition 2, one has f(y,) > f(xi) = f(x;), a contra-
diction. - ' [ |

Remark 10 The converse of the above theorem (i.e., 0f is cyclically
quasimonotone implies that f is quasiconvex) is also true in view of
Proposition 2 and the fact that every cyclically quasimonotone
operator i1s quasimonotone.

In [1] it was proved that the subdifferentials of convex functions are
maximal (cyclically) monotone operators. However, similar properties
do not hold for the subdifferentials of quasiconvex function (see [12]).

As was the case for monotonicity, quasimonotonicity is equivalent
to cyclic quasimonotonicity in one-dimensional spaces [12, Proposi-
tion 3.3]. We reproduce here from [12] the following example which
shows that if the dimension of the space 1s greater than 1, then cyclic
quasimonotonicity not only ‘is not equivalent to quasimonotonicity,
but also is not implied even by strong monotonicity:

Example 11 Let T:R>— R be defined by T(a, b) = ((a/2) — b, a+
(b/2)). Then the operator 7T 1i1s strongly monotone (i.e., satisfies
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(T(x)—T(y), x=y) >k x—y|? for all x, y€R* where k>0 is a
constant). In particular, T is pseudomonotone and quasimonotone.
However, it is not cyclically quasimonotone, as one sees by consi-
dering the points x; = (1,0), x2 = (0,1), x3 = (= 1,0) and x; = (0, - 1).

We now recall from [12] the notion of cyclic pseudomonotonicity:

DEFINITION 12 Anoperator T : X — 2% is called cyclically pseudo-
monotone, if for every xi,Xx,...,x,€X, the following implication
holds:

Jie {1,2,...,n},3x] € T(x;) : (X}, xi31 — X)) > 0=
e {1,2,...,n},Vx; € T(xj) : (X7, Xj+1 -x;) <0

(\‘Nhere Xpnt1= xl).

Equivalently, T is cyclically pseudomonotone if for every xi,
Xa,...,x,€ X and x7 € T(x;),i = 1,2,...,n, one has the implication:

(x}, xip1 —X;) 20 fori=1,2,....,n-1= (x5, x1 —xp) <0

(we thank Professor R. John for this remark). It can be easily checked
that every cyclically monotone operator is cyclically pseudomonotone,
while every cyclically pseudomonotone operator is pseudomonotone
and cyclically quasimonotone.

The following theorem was proved in [12, Theorem 3.6] for the
Clarke-Rockafellar subdifferential. The same proof applies to any
subdifferential satisfying Definition I:

THEOREM 13 Let f be a Isc function. If f is pseudoconvex and 0 C o',
then Of is cyclically pseudomonotone. Conversely, if f is radially conti-
nuous and Of is cyclically pseudomonotone, then f is pseudoconvex.

4. PROPER QUASIMONOTONICITY

As we already noted above, cyclic generalized monotonicity describes
the behavior of an operator around a “‘cycle” consisting of a finite
number of points. If we consider the convex hull of such a cycle, we are
lead to interesting restatements of the standard definitions of a mono-
tone and a pseudomonotone operator (see [12]):
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ProprosiTiON 14

(1) An operator T is monotone, if and only if for every finite sequence
(xi)iey CX, every x; €T(x;) and every y=XL \x;, with
P Ai=1and \; > 0, one has

Z /\l<x:ay - xi> < 0.
=1

(i1) An operator T with convex domain D(T) is pseudomonotone, if and
only if for every finite sequence (x;);_, CX and every y = L'_ \x;,
with E7_ X\ = 1 and X\; > 0, the following implication holds:

3y {1,2,...,n}, 3x; €T(x) : (x;,y—x;) >0 =
e {l,2,...,n}, ¥x €T(x): (x],y—x;) <O.

In contrast to the class of monotone and pseudomonotone opera-
tors, the following definition (adapted to the quasimonotone case)
leads to a different, more restrictive class of operators:

DEFINITION 15 An operator T:X — 2% is called properly quasi-
monotone, if for every finite sequence (x;)._,C X and every y =
X Aixi, with 7, A; = 1 and A; > 0, there exists i€ {1, 2,...,n} such
that

Vx: € T(x;): (x;,y —xi) <O.

Choosing n=2 and y = (x;+x3)/2, we see that a properly
quasimonotone operator i1s quasimonotone. In [12] it has been proved
that every cyclically quasimonotone operator is properly quasimono-
tone. This has the following direct consequence:

COROLLARY 16 Let f be Isc and 3 C 8'. Then f is quasiconvex if and
only if Of is properly quasimonotone.

It is also straightforward that proper quasimonotonicity and quasi-
monotonicity coincide whenever X = R. However, this is not true in
general Banach spaces, as the following example from [12] shows.

Example 17 Let X =R>, x, =(0,1), x2=(0, 0), x5 =(1,0). We
define T: R*— R* by T(x)) = (— 1, = 1), T(x,) = (1, 0), T(x3) = (0, 1)
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and T(x) = 0 otherwise. Then the operator 7T is quasimonotone with-
out being properly quasimonotone.

We reproduce from [12] the following diagram that shows the
relations between the various generalized monotonicity properties we
considered:

cyclically monotone = — monotone
! ol
cyclically pseudomonotone — pseudomonotone
l l
cyclically quasimonotone  —  properly quasimonotone
l
quasimonotone

According to the above diagram, any pseudomonotone ozperator is
properly quasimonotone. Thus, proper quasimonotonicity appears to
be only slightly stronger than quasimonotonicity. This can be also seen
if we compare to semistrict quasimonotonicity; according to [14], a
multivalued operator 7:X — 2% is called semistrictly quasimonotone
if it is quasimonotone and for any distinct x, y in its domain one has
the implication:

Ix"eTx: (x*,y—x) >0=

3:E<x:y,y>,3:*€7'(z) (" y—x) > 0.

2

The denomination is justified by the fact that a locally Lipschitz
function f is semistrictly quasiconvex if and only if its Clarke-
Rockafellar subdifferential is semistrictly quasimonotone [14].

It can be easily seen that a pseudomonotone operator is semistrictly
quasimonotone. In the hierarchy of generalized monotonicity concepts
[15], sorted from the strongest to the weakest, semistrict quasimono-
tonicity was just one step above quasimonotonicity. However, proper
quasimonotonicity should be situated between these two concepts,
since semistrict quasimonotonicity implies proper quasimonotonicity,
as shown in [14].

Properly quasimonotone operators are closely related to the Varia-
tional Inequality Problem (VIP). Let K be a closed, convex subset
of X and T:K — 2¥'\{0} be a multivalued operator. Most known
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proofs of existence of a solution for the VIP in K use some form of
generalized monotonicity of the operator T (sometimes together with
some additional assumptions) to ensure that the multifunction G
defined by

G(x) ={y€ K :Vx" € T(x)wehave (x",y — x) < 0}

1s KKM, i.e., has the following property: For each x;,x5,...,x,€K
and y€co{x,,X2,...,%,5, one has yeU.L G(x;). However, it is
obvious that G is KKM if and only if T is properly quasimonotone.
Thus, 1t appears that the class of properly quasimonotone operators is
Jjust the night class for these proofs to go through. We refer the reader
to [14] for details.
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Abstract. We consider the question of integration of a multivalued operator T, that is the question
of finding a function f such that T C df. If 9 is the Fenchel-Moreau subdifferential, the above
problem has been completely solved by Rockafellar, who introduced cyclic monotonicity as a nec-
essary and sufficient condition. In this article we consider the case where f is quasiconvex and o
is the lower subdifferential <. This leads to the introduction of a property that is reminiscent to
cyclic monotonicity. We also consider the question of the density of the domains of subdifferential
operators.
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1. Introduction

The integration of an operator 7: X — X*, i.e., the question of finding a differen-
tiable function f such that 7 = V f, has attracted much interest. When the operator
T is multivalued, this question is transformed into showing that for some function
f one has T C df (for some notion of subdifferential). The above problem has
been solved by Rockafellar, in case one imposes that f should be convex and takes
d to be the Fenchel-Moreau subdifferential of convex analysis:

f(x) ={x" € X*: f(y) = f(x) 2 x"(y —x), ¥y € X}. (D

This gave rise to the class of cyclically monotone operators. Every such operator T
is included in the subdifferential df7 of a l.s.c. convex function f7 (and coincides
with d f7 if and only if T is maximal). In particular the function fr turns out to be
unique up to a constant [16].

The general question of integrating a non cyclically monotone multivalued op-
erator T: X — 2% has already been considered by several authors [3, 7, 15, 18],
etc. In this article we relax the convexity requirement on f to quasiconvexity, that
is convexity of its sublevel sets. The class of quasiconvex functions is much larger



90 M. BACHIR ET AL.

than the class of convex functions and appears naturally in concrete problems. A
first difficulty in the question of integration arises with the choice of a subdif-
ferential. One line of research consists in using a subdifferential of local nature
generalizing the derivative (see [4, 17], e.g.). In that case, characterizations of qua-
siconvexity have been established by means of the concept of quasimonotonicity
for multivalued operators [1, 6, 11], e.g., and references therein). In this line of
research, cyclic quasimonotonicity (defined in [5]) turned out to be an intrinsic
property of the subdifferentials of quasiconvex functions. Thus an analogy with the
convex case appears. However, it is far from obvious to find additional assumptions
ensuring that a cyclically quasimonotone operator is included in the subdifferential
of a quasiconvex function.

Here we depart from this track and we work with the lower subdifferential of
Plastria [14] which is an adaptation to the quasiconvex case of the Fenchel-Moreau
subdifferential (1). For any x € X with f(x) < +oo, the lower subdifferential
0= f(x) is given by:

3 f () = {x* € X*: f(y) = f(0) = x"(y —x), ¥y € S ), 2)

where ij(x) ={x' e X: f(x") < f(x)}is the strict sublevel set. Relation (2) can
also take the following form:

J(x)
JO) +x*(y —x)

One easily observes that, as with the Fenchel-Moreau subdifferential, 0= is
not a local notion: two functions that coincide in a neighborhood of x, may not
have the same lower subdifferential at this point. We also remark that for every
x* € 0= f(x), we have {Ax* : A > 1} C 0= f(x), which shows that 9= f(x) is
not bounded. (In particular df and 0= f are in general different even for convex
functions.) However, under this notion, quasiconvex Lipschitz functions are char-
acterized by the existence of a bounded selection for their lower subdifferential (see
[14] for X = R” and [8] for the general case). We extend these results in Section
4, while in Section 3 we consider the question of the density of the domain of the
Fenchel-Moreau subdifferential of an arbitrary function f. Note that if the function
f 1is not convex, the Fenchel-Moreau subdifferential is often empty. As we show
in Section 3, its nonemptiness in a dense subset of X implies the convexity of f.

In Section 2 we review some results concerning cyclically monotone operators
and Rockafellar’s integration technique for the Fenchel-Moreau subdifferential.
We note in particular that this integration requires a property that — a priori —
seems to be weaker than cyclic monotonicity (CM), namely what we call ‘cyclic
monotonicity with respect to a certain point xy° (CM(xy)). However, these prop-
erties turn out to be equivalent. This alternative description of cyclic monotonic-
ity motivates the introduction, in Section 5, of a new class of operators, that is
operators fulfilling a certain property (L(xp)) with respect to some fixed point
Xxo. This property represents a pointwise version of cyclic monotonicity: indeed

a<f(x)={x*ex*:f(y)>min{ },VyeX}. 3)
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(L(xp)) is strictly weaker than cyclic monotonicity, while an operator T is cycli-
cally monotone if, and only if, T satisfies (L(x)) for all x € dom(T). We also
show that the lower subdifferential 0= f of any function f restricted to the set
S;(XO) U {xo} fulfills (L(x0)). Moreover, any such operator 7 is included in the
lower subdifferential 0= f of some quasiconvex l.s.c. function f.

In the last section we introduce the class of operators fulfilling another prop-
erty — that we denote by (R(x()) — relative to a (fixed) point xy. This property is
strictly weaker than (L (xp)). It is shown that if 7 fulfills (R(x)) at every point of its
domain, then it is monotone. The main result of Section 6 states that the operator
T defined by T(x) = 9= f(x), if x # xp and T (xo) = 9f (xo) satisfies (R(xp)),
for any f such that df (xg) # @. On the other hand, any operator of this class is
always contained in the lower subdifferential of some quasiconvex l.s.c. function
f. Thus we obtain a characterization of this class, which is similar to the one given
for cyclic monotonicity by means of the Fenchel-Moreau subdifferential.

Let us point out that while lower semicontinuous convex functions are deter-
mined up to a constant by their Fenchel-Moreau subdifferentials, two continuous
(even differentiable) quasiconvex functions having the same Plastria subdifferential
may differ essentially. In fact, the Plastria subdifferential of a continuous quasi-
convex function may even be empty, as shown by the example of the function
f:R — R given by f(x) = x?, where p > 1 is an odd integer. (More generally,
0= f is empty whenever liminf, o f (x)/[|x]| = —00.)

Throughout this paper, we often use the following abbreviations: FM subdif-
ferential for the Fenchel-Moreau subdifferential, 1.s.c. for lower semicontinuous
and CM operator for a cyclically monotone operator. Furthermore, X denotes a
Banach space with dual space X*, f a function on X with values in R U {+o00},
and T a multivalued operator defined on X and taking its values in the subsets
of X*. For any x € X and any x* € X* we denote by x*(x) the value of the
functional x* at the point x. We also use the standard notation: B.(x) for the
closed ball centered at x with radius ¢ > 0, dom(f) := {x € X : f(x) € R}
for the domain of the function f, S¢n) = {x’ € X : f(x') < f(x)} and
S;(x) ={x" € X : f(x') < f(x)} for the sublevel and the strict sublevel sets
of f respectively and dom(7") := {x € X : T(x) # @} for the domain of the
multivalued operator T'.

2. Integration of the Subdifferential of a Nonconvex Function

The properties we introduce and discuss in this article are defined by fixing a certain
point x as a base point. It is natural to ask whether this choice plays any role. In this
section we shall see that this is not the case for the property of cyclic monotonicity.

DEFINITION 2.1. Let T: X — 2% be a multivalued operator. The operator T is
called
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(i) cyclically monotone with respect to a point xo € dom(7) (or alternatively
T has the (CM(xy)) property), if for any x;,x5,...,x, € X and any x; €
T (x0),x7 € T(x1),...,x,; € T(x,) one has

n—1
X3 (X0 — Xa) + 57 (xip1 — x;) <0,
i=0
(ii) cyclically monotone (CM), if it satisfies (CM(x)) for every point x of its
domain.

It is clear that Definition 2.1(ii) coincides with the standard definition of cyclic
monotonicity (see Definition 2.20 in [13]), while it obviously implies Definition
2.1(i). The following proposition shows that the converse is also true.

PROPOSITION 2.2. Every operator satisfying (CM(xy)) is cyclically monotone.
Proof. Suppose that T satisfies (CM(xy)) and that for some (z;)7_, C dom(T)
and z¥ € T(z),i = 1,2,...,n we have z(z; — z,) + Z;’;ll (i1 — i) =
a > 0.Forany k € Nandi = 0,1,2,...,k - n we define X;+1 = Zimodn)+1>
X1 = Zimodms1 (Where fori > 0, we have j =i (modn) iff i — j = pn, for
some p € Nand 0 < j < n). Let x; € T (xo). Since T satisfies (CM(xy)) we have:

kn

Xn41 (X0 = Xin41) + Zx;k(xi+l —-x) <0
i=0

which implies:

n—1
x5 (21 = X0) + 250 — 20) + kY 2@ — z) + Y 7 @iy —2) | <O

i=1

Taking the limit as k — 4-0o we obtain a contradiction. a

Remark 2.3. An operator T can be cyclically monotone in a trivial way, if for
instance dom(7") = @ or if dom(7T") = {xp}.

Let us observe that cyclic monotonicity of df is tied to the very definition of the
Fenchel-Moreau subdifferential df and does not depend on the convexity of the
function f. Indeed, if f is any function and T: X — 2X" any operator satisfying
T C 9f, then for any xo, X, ...,x, € Xandx € T(x;) (i =0, 1, ..., n) relation
(1) guarantees that f(x;+1) — f(x;) > x'(xiy1 — x;). Setting x,41 = xo and
adding the previous inequalities yields Z?:o x(xiy1 — x;) < 0. Let us state this
observation as a lemma for further reference.

LEMMA 2.4. For any function f, any operator T satisfying T C 0f is cyclically
monotone.
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The converse assertion dealing with the integration of cyclically monotone op-
erators is more interesting. The proof can be found in [16] and essentially requires
condition (CM(xp)).

THEOREM 2.5. Let T be a multivalued operator satisfying (CM(xy)) at some
point xg of its domain. Then there exists a l.s.c. convex function fr such that T C

fr.

The lL.s.c. convex function f7 of the above theorem has been constructed in [16]
(see also [13]) by the following formula, in which c is a fixed constant:

n—1

frx) = c+ supdxr(x —x) + Y X (i — x) ¢, “)
i=0

where the supremum is taken over all n € N\ {0}, all finite sequences {xi, x5, ...,
X,} indom(7) and all x/ € T(x;), fori =0,1,...,n.

Let us note here that (CM(x()) ensures that fr is not identically equal to +oo0,
since fr(xp) = c.

Remark 2.6. Combining Theorem 2.5 with Lemma 2.4 we obtain an alternative
way to establish Proposition 2.2.

We also recall that the second conjugate f** of a proper function f is given by:

) = gug*[x*(X) — fr(xM], (5
where
™) = sug [x*(x) — f(0)]. (6)

Since the subdifferential of any function f is cyclically monotone, the L.s.c.
convex function fr given in (4) is well defined when one takes T = df and
af (xo) # @. If in particular f is Ls.c. convex, the uniqueness of Rockafellar’s
integration ([16]) shows that for ¢ = f(xp) one has fr = f, so in particular
fr = f*.If now f is not convex, a natural question arises: is fr related to
™7 We provide below a positive answer in finite dimensions under a coercivity
assumption on f. Let us first observe that (for ¢ = f(xp)) fr < f from which it
follows fr < f**, since f** is the greatest l.s.c. convex function majorized by f.

PROPOSITION 2.7. Let f:R" — RU {+00} be a l.s.c., 1-coercive function (i.e.,
limy oo f(X)/IIx|| = +00), and let T = 0f. Then for some constant c, the
functions fr and f** (defined in (4) and (5) respectively) coincide.
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Proof. From our assumptions it follows that f attains its minimum at some point
Xo, hence 0 € df (xp). It follows that f**(xg) = f(x¢). Taking ¢ = f(x¢) in (4), we
conclude from (1) that fr < f. Since f7 is convex l.s.c., it follows that fr < f**.

Let us prove the reverse inequality. Since the function f** is L.s.c. and convex,
it follows from Theorem B in [16] that:

n—1
£ = fo) +supd Y xF (i — x) + x5 (x = x,) ¢ (7
i=0
where the supremum is taken over all n € N, all finite sequences {xi, x2, ..., X,}

in dom(df**) and all choices x/ € f**(x;), fori =0,1,...,n.
Using the inequality f** < f, for any x € R” one has:

f) = 7)) = 9f"(x) S af(x). ®)
In particular, since f**(xy) = f(xo), one observes that

df ™ (x0) S 9f (xo0). (©))
Fix now x € X and consider any M < f**(x). For some x1, x5, ...,x, € X and

x! € 0f**(x;) one has
M — f(x0) < xg(x1 — x0) +x7(x2 — x1) + - -+ + X, (x — Xp,). (10)

Since the function f is 1-coercive and is defined in a finite-dimensional space,
using Theorem 3.6 of [2] we conclude that for i € {1, 2, ..., n}, there exist (yl.J )1;.": !

in X, and (\))%_in (0, 1) with "% | 2/ = 1 such that

e [ arod) (11)
Jj=1,2,.. ki
and
ki
X = Z)\fyl] (12)
j=1

CLAIM. There exists some y{ ' such that
x5 (' = x0) + x7 (2 = ¥{1) 2 x5 (01 = x0) + X} (%2 — x1). (13)
Proof. If this were not the case, then for every j we would have
x5 (] = x0) + 202 = ¥)) < x5 (01 = x0) + x{ (¥ — x). (14)

Multiplying both sides of (14) by k{ and adding the resulting inequalities for j =
1,2,..., k; we get a contradiction by using (12). ]
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~ Arguing in the same way as in the proof of the above claim, we can find some
y5? such that

OGP =y xi s — yP) = x (o — ¥ + x5 — xo). (15)
It follows that

xg (] = x0) +xF P — vy + x5z — yP)
> x5 (x; — x0) + x7 (2 — x1) + x5 (x3 — x2).

Proceeding like this, we inductively show that

M — f(x0) < x; (3" —x0) + X7 (39> — y{) + -+ + x5 (x — yi).

Note that from (9) we have x; € 9f (xp), while from (11) we get x* € df (yl.j" ), for
i =1,2,...,n. Now (4) guarantees that M < fr(x). Since M can be chosen to
be arbitrarily close to f**(x), we conclude that fr(x) = f**(x), hence equality
holds. O

Let us remark that the above proof shows that fr = f** whenever the Ls.c.
function f satisfies the following condition:

(C) Forany x € dom(3f**) and x* € 3f**(x), there exist (y;)*_; € X and (A;)*_,
in (0, 1) with Y| &; = 1, such that x = Y_F | A;y; and x* € (_; 9f (7).

The conclusion of Proposition 2.7 can be satisfied also by noncoercive func-
tions (in infinite-dimensional spaces), as for instance by the function f(x) =
min{|x||, 1}.

COROLLARY 2.8 Let f and g be two Ls.c. functions satisfying condition (C). If
of = dg, then f** = g** (up to a constant).

Proof. Let T = d9f = 0g. Note that condition (C) yields dom(7") # @. Let
Xxo € dom(T). The proof of Proposition 2.7 shows that f** = fr when one takes
¢ = f(x) in (4) and that g** = fr + g(x9) — c. O

3. Functions with a Dense Domain of Subdifferentiability

In the preceding section we considered operators that are (included in) the sub-
differential of a nonconvex function. These operators are cyclically monotone, but
this may happen in a trivial way, see Remark 2.3. The example of the function
f(x) = min{||x|, 1} (also f(x) = +/]Ix]]) shows that one may have f; = f**
even if df is a singleton. However this relation is more likely to be satisfied when
the domain dom(df) is large. In this section, we shall consider the question of the
density of the domain of such operators. The following proposition shows that for
L.s.c. functions that do not take the value 400, the density of df is equivalent to the
convexity of the function.
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PROPOSITION 3.1. Let f: X — R (i.e, dom(f) =X) be Ls.c. and such that
dom(9f) is dense in X. Then f is convex and locally Lipschitz.

In particular the operator df is maximal monotone and locally bounded.

Proof. We first show that f is convex. Since dom(df’) is nonempty, we conclude
that f** > —oo, which together with f > f*™* shows that X = dom(f) C
dom( f**). It follows that the 1.s.c. convex function f** is continuous.

We now show that the functions f and f** coincide. One observes that f(x) =
™ (x), for every x € dom(df). Take now any x in X. Our assumption implies the
existence of a sequence (x,), in dom(df) such that (x,) — x. Since f**(x,) =
f(xy),forn € N, fisLs.c.and f**is continuous we get:

7 (x) = liminf f*(x,) = liminf f(x,) > f(x) > f™(x).

Thus f = f**. For the last assertion see Theorem 2.25 and Theorem 2.28 in [13],
e.g. a

We do not know if the assumption dom(f) = X in the above proposition can
be omitted. The following corollary shows that this assumption is not necessary if
X = R”. In this case it becomes part of the conclusions.

COROLLARY 3.2. Let f:R" — R U {400} be Ls.c. and such that dom(df) is
dense in R". Then dom( f) = R" and the function f is convex and locally Lipschitz.
Proof. We have dom(df) € dom(f**), so dom(f**) is also dense in R”. Since
dom( f**) is convex, it follows that dom( f**) = R”", hence f** is continuous.
Arguing as in the last part of the proof of Proposition 3.1 we conclude again
that f is convex and continuous. a

However the following example shows that the lower semicontinuity assump-
tion cannot be dropped, even in the case X = R.

EXAMPLE. Consider the indicator function ip of any dense subset D of R:

0 if x eD,

i) = { +oo if x ¢ D.

We note that this function is L.s.c. on its domain, without being l.s.c. in the whole
space (unless D = R). Moreover, for every x € D, we have dip(x) = {0}, hence
D C dom(0dip). However, the function i p is not convex.

Let us now give an infinite-dimensional version of Corollary 3.2 by means of an
additional assumption on the operator df. We shall say that an operator 7: X —
2X" has a (locally) bounded selection on its domain, if for every xo € X there exists
M > 0 and p > 0 such that:

Vz € dom(T) N B,(xp), 32" € T(z) : Iz < M. (16)
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LEMMA 3.3. Let f: X — R U {400} be a ls.c. function such that dom(df) is
dense in X. If 0f has a (locally) bounded selection on dom(df), then dom(f) = X
and f is (locally) Lipschitz.

Proof. Let us first assume that df has a locally bounded selection on dom(df)
and let p > Oand M > 0 be as in (16). We show that the function f is Lipschitzian
on the interior int B,(xo) of B,(xo) with constant at most M. Indeed take any
x,y € int B,(xp). Since dom(df) is dense on X, there exists a sequence (x,),en
indom(df) N B,(xo) and x; € df(x,), with ||x; | < M, such that (x,) — x. From
(1) we conclude that f(x,) < f(y) +x, (x, —y). Since f is Ls.c., taking the limit
asn — +o0o we get

J&) < fO)+Mlx =yl (17

Since (17) holds for all y in int B,(xo), choosing y in dom(f) we conclude that
f is finite at x. Since x is arbitrary in int B, (xp), we conclude that int B,(xp) €
dom( f). It now follows easily that f is Lipschitz on intB,(xo).

If now df has a bounded selection on dom(df), taking p = 400 we conclude
that f is Lipschitz. O

We now state the following corollary.

COROLLARY 3.4. Let f: X — R U {400} be a Ls.c. function. The following
statements are equivalent:

(1) dom(0f) is dense in X and df has a (locally) bounded selection on dom(df).
(i) dom(df) = X and of is (locally) bounded.
(i) dom(f) = X and f is convex and (locally) Lipschitz.

Proof. The implications (iii) = (ii) = (i) are obvious. The implication (i) =
(iii) follows from Lemma 3.3 and Proposition 3.1. O

4. Lower Subdifferentials with a Dense Domain

In this section we endeavor to complete results of the literature concerning quasi-
convex functions and their lower subdifferentials, in order to reveal analogies with
the characterization of Corollary 3.4. We recall that a function f: X — RU {+o0}
is called quasiconvex, if its sublevel sets S3(f) = {x € X : f(x) < A} are
convex for A € R, or equivalently, if for any x, y € X and ¢ € [0, 1] the following
inequality holds:

fax+ (1 —=1)y) <max{f(x), f(y)}.

We first state the following lemma concerning the lower subdifferential 0= (defined
in (2) or (3)). We omit its proof, since it is similar to the proof of Lemma 3.3.
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LEMMA 4.1. Let f: X — R U {+00} be a Ls.c. function such that dom(0= f) is
dense on X. If the operator 3= f has a (locally) bounded selection on dom(0< f),
then dom(f) = X and f is (locally) Lipschitz.

The theorem that follows is analogous to Corollary 3.4.

THEOREM 4.2. Let f: X — RU {400} be a Ls.c. function. The following asser-
tions are equivalent:

(1) dom(0= f) is dense on X and 0= f has a bounded selection on dom(d~ f).
(i) 0= f has a bounded selection on X.
(iii) f is quasiconvex, Lipschitz and dom(f) = X.

Proof. The equivalence (ii) < (iii) was proved in [9] (see Corollary 3.3).
Implication (ii) = (i) is obvious. For (i) = (iii) we first apply Lemma 4.1 to
conclude that f is Lipschitz. In particular the sublevel sets S, of f have nonempty
interior, whenever A > inf f. It now follows from Proposition 3.1(i) of [10] that f
is quasiconvex. a

The following result extends Theorem 4.2 in a non-Lipschitzian case and is
comparable to Corollary 3.4. However the implication (iii) = (ii) does not hold in
general, as shown by the example below.

PROPOSITION 4.3. Let f:X — R U {+o0} be a Ls.c. function. Among the
following statements one has (ii) = (i) = (iii).

(1) dom(0= f) is dense and 0= f has a locally bounded selection on dom(d = f).
(i1) 0= f has a locally bounded selection on X.
(iii) dom(f) = X and f is quasiconvex and locally Lipschitz.

If the restrictions of f to its sublevel sets are Lipschitzian, then the above
statements are equivalent.

Proof. Implication (ii) = (i) is obvious. If (i) holds, then using Lemma 4.1 we
conclude that dom f = X and f is locally Lipschitz. From Proposition 3.1(i) of
[10] it now follows that f is quasiconvex, hence (iii) holds.

Let us now assume that f is quasiconvex, continuous, dom( f) = X and for any
A € R the restriction of f to S; := {x € X : f(x) < A}is a Lipschitz function of
constant k, for some k > 0. We show that 0= f has a bounded selection on S.

Indeed, consider any xo € S;. If f(x9) = inf f, then 0 € 9= f(xp). Hence we
may suppose that f(xo) > inf f. Since f is continuous, the closed convex set S 7y
has a nonempty interior. Separating int Sy, from {xo}, we obtain a functional
¥ € X*, with ||z*|| = 1 such that z*(x) < z"(xo), for all x € int S (y,. It is easily
seen that x( is minimizer of f on the half space {y € X : z*(y) > z*(xp)}. Set
x5 = k'z* with k' > k.

CLAIM. x5 € 0~ f(xo).
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Proof. Suppose that x; ¢ 0= f(xo). It follows from (2) that for some x € S;(XO)
we have f(xo) — f(x) > x;5(xo — x). Given any ¢ > 0, we may find y € X such
that x3(y) = xj(vo) and xj(y —x) + & > [xgllly — x|l = Klly — x]|. Since
f is continuous, we can find some x’ in the segment [x, y] such that f(x') =
f(x0). We easily get that xj(x" — x) +¢& > k'||x" — x]|. Since f(xo) — f(x) >
x5 (xo—x) = x5(y—x) > xj(x'—x), it follows that f(x") — f(x) > k'||x"—x]||—e.
Since ¢ is arbitrary, we have contradicted the fact that f is Lipschitz on Sy, with
constant k. O

Since x( is arbitrary in S, (and since A is arbitrary), we have shown that
dom(d= f) = X. Moreover, the continuity assumption of (iii) ensures that for any
x € X and A > f(x) there exists € > 0 such that B,(x) C S,. If k is the Lipschitz
constant of f on S, the previous claim asserts that 0= f has a selection on B, (x)
which is (norm) bounded by any k" > k. O

Remark. The claim of the preceding proof relies heavily on techniques em-
ployed in [14] (see also Corollary 4.20 in [8] or Proposition 6.2 in [12]) in order to
prove the equivalence (ii) < (iii) in Theorem 4.2 if X = R". In finite dimensions
it has been shown in Corollary 4.20 of [8] that, if condition (iii) of Proposition 4.3
holds and f is inf-compact (that is for all A € R, the set S, is compact), then
f is everywhere lower subdifferentiable, that is dom(d= f) = R”". Note that the
assumptions f is inf-compact and dom(f) = X imply that the space X can be
written as a countable union of compact sets, hence it is finite-dimensional. On
the other hand, an easy compactness argument shows that if condition (iii) holds
and f is inf-compact, then the restriction of f to the sublevel sets is a Lipschitz
function. Hence Proposition 4.3 can be seen as an extension of Corollary 4.20 in
[8] to infinite dimensions, which also establishes the existence of a locally bounded
selection.

One cannot expect a characterization similar to Theorem 4.2. The following ex-
ample shows that, without additional assumptions, a locally Lipschitz quasiconvex
function f may have its subdifferential 9= f everywhere empty.

EXAMPLE. Let X = R and consider the quasiconvex function f:R — R, with

—x? ifx <O,

f(x):{ x  ifx >0

It is easy to see that f is locally Lipschitz, but 9= f(x) = @, for all x € R.

5. Integration by Means of the Lower Subdifferential

In this section we consider again the problem of integrating a multivalued operator,
by relaxing this time the assumption on f (to be quasiconvex instead of being
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convex) and by taking 0 to be the lower subdifferential 9=. We replace accord-
ingly cyclic monotonicity with a certain point-based property that we call (L (xg)).
This property yields the construction of a l.s.c. quasiconvex function g7 in a way
reminiscent to the construction of the L.s.c. convex function fr in (4) by means of
Definition 2.1(i). We show that a cyclically monotone operator fulfills (L(x)) at
any point x € dom(7T). Conversely, if an operator satisfies (L (x)) at every point of
its domain, then it is cyclically monotone (see Proposition 5.2). Roughly speaking,
property (L (xg)) is to be understood as a pointwise version of cyclic monotonicity.

DEFINITION 5.1.  Anoperator T: X — 2% " is said to have property (L (x¢)) with

respect to some xo € dom(7), if for any n > 1, any xy, x2, ..., x, € dom(7") and
any x € T(x;) fori =0, 1, ..., n, one has:
X (X1 — xo)
min X7 (X2 — x1) + xg(x1 — xo) <o.

—1
x5 (xo — xp) + D120 X (i1 — X;)

It follows easily that if T is cyclically monotone (see Definition 2.1(ii)), then it
satisfies (L(x)) at every point of its domain. The following proposition shows that
the converse is also true:

PROPOSITION 5.2. If T satisfies (L(x)) for every x € dom(T), then T is cycli-
cally monotone.

Proof. Suppose that T is not cyclically monotone. Then there exist n > 2 and
X0, X1, ..., Xp—1 in X and x5 € T (xo), x{ € T(x1),...,x,_; € T(x,—1) such that
(setting x,, = xq)

n—1

le-*(xiﬂ —x;) > 0. (18)
i=0
Fori =0,1,...,n — 1 and for j =i (modn) (i.e., j = nm + i for some m € N)

we set B; = x;(xj+1 — X;), so that (18) can be rewritten:

n—1
> B >0. (19)
i=0

Thus, there exists some 4 € {0, 1, ..., n—1} such that 8;,, > 0. Since the operator

T satisfies L(xy,), there exists some k € {h; + 1,k + 2, ..., h; + n} such that

> B <0 (20)

Note that the fact that k # h; + n is ensured by (18). Taking now k to be the
largest integer in {h; + 1, hy + 2, ..., h; + n — 1} such that (20) is satisfied, we
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conclude that 8,1 > 0. Setting now 4, = k+ 1 and proceeding like this, we define
inductively a strictly increasing sequence (hq)j;o: , such that for any ¢ > 1 we have
Br, > 0 and

q+l 1

Y. B <O @1

i=hy

Since the sequence (h, (modn)),cy has an accumulating point, we can find
p > q = 1 suchthat h, = h, + mn, for some m € N (i.e., h, = hy (modn)). We
thus obtain the following equality:

hgy1—1 hgy2—1 hp—1 hp—1
Z ﬂl Z :81 -+ Z’Bl Zﬁ’_mzﬁ’
—hq+1 i:hpfl
which is not possible in view of (19) and (21). O

Remark. Considering for instance the operator T: R — 2¥ given by T'(0) = {0}
and T'(x) = [—1, 1], if x # 0, it is easy to see that T satisfies property (L (xp)) for
xo = 0, without being CM.

Motivated by (4) we consider the following function g7: X — R U {+o00}:

x5 (X1 — xo)
* _ * _
gr(x) = c+ supmin ¥ —x) +x° (¥1 = x0) , (22)
)C:(X -xn) + Z _() X; (-xl+l )

where c is an arbitrary constant and the supremum is taken over all n € N, all finite
sequences (x;)?_; € dom(T') and all x}' € T'(x}),fori =0, 1, ..., n. Note that the
choice n = 0 in the above supremum yields g7 (x) > Squ;;eT(xO){xS (x —x9)} +c.
In particular g7 (x) > —oo, for all x € X.

Since gr is represented as a supremum of a family of subaffine continuous
functions (i.e., of functions of the form x — min {c¢, x*(x) + b}, where b, ¢ € R),
it follows that it is quasiconvex and lower semicontinuous. Comparing (4) and (22)
one notes that g7 (x) < fr(x), for every x € X.

The following theorem is analogous to Theorem 2.5:

THEOREM 5.3. If T fulfills (L(xg)) then there exists a l.s.c. quasiconvex function
g such that T (xg) € dg(xg) and forall x € X, T (x) € 9~g(x).

Proof. Set g = gr. Since T fulfills (L(xo)), it follows (by taking n = 1 and
X1 = xp) that gr(x9) = c, hence as observed before, for any x € X and any
x5 € T (xp) we have

xg(x — x0) + gr(x0) < gr(x)
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which shows that x; € dgr(xo).
Let x* € T(x). For any M < gr(x), there exist n > 0 and (for n > 0)
X1, X2, ..., X, € X, x5 € T(x0), x{ € T(xy),...,x,; €T(x,)such that

xg(x1 — Xxo)

X\ (x2 — x1) + x5(x1 — xo)

M < ¢+ min (23)

—1
X0 = x) + 3070 X (i — x)

In particular, setting x,+; := x (and considering separately the cases n = 0 and
n > 0),onegets M <> ! ,x(x;41 —x;) + c. Forany y € X, and adding to both
sides of this inequality the quantity x*(y — x) we obtain:

M+ x"(y —x) < ) xf (i — ) + x5y =) + e (24)
i=0

Combining (23) and (24) and taking the minimum we obtain:

xo (X1 — Xxo)

X7 (x2 — x1) + xg5(x1 — xo)
min{M, M + x*(y — x)} < ¢ + min .-
X0 = X))+ 3Ty X (Xt — x7)
X*(y = x) + Do X (Xig1 — Xi)

(with the convention x,.1 := x). As the right-hand side of the preceding inequality
is always less than or equal to g7(y) and since M can be arbitrarily close to g7 (x),
using (3) we conclude that x* € d=gr(x). This finishes the proof. O

Remarks. (1) If one omits the inclusion T (xg) € dg(xg) in the above state-
ment (i.e., replaces it by T (xg) € d~g(xp)), then the remaining conclusion holds
trivially, since one can take for g the constant function.

(2) If the operator T of Theorem 5.3 has a (locally) bounded selection at least
in a dense subset of X, then the function g (of Theorem 5.3) will be (locally)
Lipschitz. This is an immediate consequence of Theorem 4.2 (resp. Proposition
4.3).

We finally state the following ‘converse’ to Theorem 5.3.

PROPOSITION 5.4. For any function f and any xo € dom(f), the operator T
S;(XO) U {xo} — 2X* given by T (x) = 9= f(x) fulfills (L(xo)).

Proof. The result follows from the fact that for any x € S%(x, and any Xy €
T (xo) one has x;j(x — xo) < 0. O

Note that Proposition 5.4 is similar to Lemma 2.4, the difference being the
domain of the operator (S;(XO) U {xo} instead of the whole space X).
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Property (L (xp)), introduced in the present section, is a logical step from cyclic
monotonicity and the FM subdifferential to the lower subdifferential. Theorem 5.3
and Proposition 5.4 almost characterizes this property. However, given a function
f with df(xg) # ¢, Proposition 5.4 (unlike Lemma 2.4) does not describe the
behavior of the operator

_ )t fx) if x # xo,
Tx) = { af (x0) if x = xo, (25)

on the whole space, but only on the strict level set S7, ,. This is clearly shown by
the following example:

EXAMPLE. Let f:R — R be given by:

-1 if x < -1,
f(x):{x if x>—1.
Then the operator T defined in (25) with xy = 0 is given as follows:
{1} if x=0,
Tx)=11[1,+00) if x € (—1,0)U(0,+400),
R if x <—1.

It is easy to see — considering the points xo = 0, x; = 1 and x, = 3/2 —that T fails
to satisfy L(0).

6. Characterization of Operators which are contained in the Lower
Subdifferential of a Function

In this section we introduce the property (R(xp)) aiming at describing the above
operator T (see (25)) in the whole space. Although this property is weaker than
(L(x0)), we show that operators fulfilling (R(xy)) can still be ‘integrated’ (in the
sense of Theorem 5.3). This leads to a situation similar to Lemma 2.4 and The-
orem 2.5. We also show that any operator satisfying (R(x)) at every point of its
domain, iS monotone.

DEFINITION 6.1. An operator T: X — 2% " is said to have property (R (xg)) with

respect to some xy € dom(7), if for any n > 1, for any xy, x5, ..., x, € dom(7T)
and any x/ € T(x]) fori =0, 1, ..., n, one has:
n—1
x5 (X1 — x0) 4+ Y (¥ (gt — X)) 4 {0 — 6} <0, (26)

i=1

where {x'(x;+1 — x;)}” = min{x/(x;+1 — x;), O}.
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Definition 6.1 is in the same spirit as Definition 5.1 and Definition 2.1(i). In
particular every operator that satisfies (L (x()) also satisfies (R(xp)). The following
example shows that the converse is not true:

EXAMPLE. Let T:R — 2% be such that 7(0) = {1}, T(1) = {2}, T(2) = {1}
and T (x) = () elsewhere. One can verify that T has property (R(xo)) for xo = O,
without satisfying (L (xo)).

In this example one may observe that the operator 7" does not satisfy (R(x)) at
every point of its domain (it fails at the point x, = 1). The following proposition
(together with the fact that for one-dimensional spaces cyclic monotonicity and
monotonicity coincide ([5], e.g.)) gives an explanation for this.

PROPOSITION 6.2. If an operator T fulfills (R(x)) at every point of its domain,
then T is monotone.
Proof. Take any x, y € X, x* € T(x), y* € T(y) and assume that

Xy —x)+y'(x—y >0. 27)
Interchanging the roles of x and y, we may suppose that y*(x — y) > 0. Then

taking n = 1, xo = x and x,, = y, relation (26) yields that x*(y — x) < 0. Taking
now n = 1, xo = y and x,, = x, relation (26) leads to a contradiction with (27). O

COROLLARY 6.3. If X = R, then T fulfills (R(x)) for all x € dom(T) if, and
only if, T is cyclically monotone.

The following theorem characterizes the class of operators that satisfy property

(R(x0))-

THEOREM 6.4. The operator T satisfies (R(xp)) for some xo € dom(T) if, and
only if, there exists a l.s.c. quasiconvex function ht such that T (xo) C dhr(xg) and
T(x) Co0~hr(x), forall x € X.

Proof. (a) Let us first assume that T satisfies (R(xg)) at some point xy of its
domain. We consider the following function 47: X — R U {4-00} given by

hr(x) = ¢+ supd xg(x — xo) + »_{x7 (xix1 — %)} 1 (28)

i=1
where x,,.; := x, c is an arbitrary constant and the supremun is taken over all
n € N, all choices x1, x, ..., x, € dom(7T) and allx € T(x/) fori =0, 1,...,n.

We make here the convention that the choice n = 0 in the above supremum is
acceptable and corresponds to the term SUP x 7 (xg) x5(x — x0) +c.

It is easy to see that &7 is l.s.c. and quasiconvex. From Definition 6.1 above, we
conclude that h7(xp) < ¢, and in fact A7 (x) = c. It follows directly from (28) that
for every x € X we have

hr() > sup xi(x—xo)+e= sup i —xo) + hr (o)
xeT (xp) xeT (xp)
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which in view of (1) ensures that T (xg) < dhr(xp).
Let now x € X and x* € T(x). For M < hy(x), (28) shows that there exist

neN x,x,. .., x4 :=x € Xand x5 € T(xp), x{ € T(x1),...,x; € T(x,)
such that
n—1
C 4 x5 (1 — x0) + ) {7 (g1 — x0T+ (=)} > M. (29)

i=1

(If n = 0, then we have ¢ + xj(x — xo) > M.) Forany y € X, setting x4 := x,
adding to both sides of (29) the quantity {x*(y—x)}~ (and considering successively
the cases n = 0 and n > 0), we obtain

¢+ x50 = x0) + ) (i — X))+ (X (y — 1))
i=1
> M+ {x*(y —x)}". (30

We note that the left side of (30) is always less than or equal to k7 (y). Since M
can be chosen arbitrarily close to iy (x), we conclude from (30) that:

- hr(x)
hT(y) >m1n{x*(y—x)+h]‘(x) } (31)

It now follows from (3) that x* € d~hr(x). We conclude that for every x € X,
T(x) Co~hr(x).
(b) Given any function f with af (x¢) # ) we consider the multivalued operator

a<f(-x)’ X ;é X0,
df (x0), X = Xo. (32)

For any x; € T (xo) and any x; € dom(7") we have:
f 1) — f(xo) = xg(x1 — xo). (33)

Furthermore, for any x; € dom(T), x € T(x;) and any x;;; € X, we conclude
from (32) and (3) that

[ (i) = () = min{x} (xi41 — x;), 0} (34)

Considering any finite cycle {xg, X1, ..., X, X,41 := Xo} in dom(7") and any choice
xf € T(x;),fori =0,1,...,n, weconclude from (33) and (34) that:

T(x)= {

x5 (= x0) + Y _{x (rigr —x)} <0 (35)
i=1
which shows (see Definition 6.1) that T satisfies (R (xp)).
The observation that property (R (xp)) is inherited by smaller operators (in the
sense of the inclusion of graphs) finishes the proof. a
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The above theorem gives a characterization of the class of operators that sat-
isfy (R(xp)). The situation is analogous to the one corresponding to the class of
cyclically monotone operators as described by Lemma 2.4 and Theorem 2.5.

Remarks. (1) Since property (L(xg)) entails (R(xo)), Theorem 5.3 can be de-
duced as a consequence of the ‘only if” part of Theorem 6.4. Let us also note that,
as was the case in Theorem 5.3, the inclusion 7 (x¢) € dhr(xp) is an essential part
of Theorem 6.4.

(2) Using Theorem 4.2 or Proposition 4.3, we may conclude that the quasicon-
vex function s constructed in the above proof is (locally) Lipschitz whenever the
operator T has a (locally) bounded selection in a dense subset of X.

(3) If there exists xy € dom(7") such that T (xy) = {0}, then the above construc-
tion leads to the constant function 27 = c. Let us observe that this situation cannot
occur if T is given by (32) unless df (xg) = {0}.

(4) One may wonder whether the analogy between (CM(xy)) (cyclically mono-
tone) and (R (xp)) operators can go any further. Namely, starting from an arbitrary
function f with df(xy) # @, one may define an operator T of the class (R(xg))
(resp. of the class (CM(xg))) via relation (25) (resp. T = 0df) and subsequently
consider the l.s.c. quasiconvex function Ay (resp. the l.s.c. convex function f7)
given by the formula (28) (resp. (4)). In both cases we have:

xp(x = x0) < hr(x) < fr(x) < f(x). (36)

Itis easily seen that if f is affine, then the functions A7, fr and f coincide (modulo
the constant f(xg)). It is also known that if f is convex and Ls.c., then fr and
f coincide [16]. However in general the function A7 does not coincide with f
and in particular — unlike the convex case — the operator T defined in (25) does
not uniquely determine the function f. A comparison of (4), (22) and (28) yields
hy < gr < fr. In the following example we show that if T is defined by (25), the
functions 47 and gr are in general strictly majorized by f.

EXAMPLE. Consider the function f:R — R given by f(x) = |x + 1| — 1. Then
for xy = 0, the operator T in (32) is given as follows:

[1, 4+00) if x € (—1,0)U (0, 400),

{1} if x=0,

R if x=-—1,

(—o0, —1] if x <-—1,

T(x) =

hence the constructions (22) and (28) lead to functions g7 and Ay:

X if x> —1,
gr(x) = hr(x) = { 1 if x < —1.

Remark. As pointed out by the referee, the results of this paragraph and the
integration procedure of Rockafellar ([16]) can both be seen as particular cases of
the following scheme:
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Consider a general function b: X x X x X* — R. Then for any function f: X —
R U {400} let us define the b-subdifferential 3° f: X — 2X" by

3 f(x)={x* € X*: f(y) = f(x) +b(x,y,x*), forall y € X}. (37)

Further, given an operator 7: X — 2% and a point xq in dom(T), define the
b(xo)-property as follows: For any x;, x2,...,x, € X and any x; € T (xo), x| €
T(xy),....x; € T(xy)

Y b, xig1, x7) <0, (38)
i=0

where the convention x,1; = x¢ is used. Then if T has this property, adapting
the procedure of Rockafellar (in [16]) we can construct a function fr in such
a way that T C 9% fr. The function fr, being a supremum of functions of the
form b(x, y, x*), will enjoy a certain property based on b(-, -, -), that we call b-
convexity. In the light of this general scheme, the conclusions of Theorem 2.5 and
Theorem 6.4 may read in a unified way as follows:

T has b(xg) < T C 9° fr,  for some b-convex function f7.

Note that Theorem 2.5 corresponds to the case b(x, y, x*) = x*(y — x), where
one recovers in (37) the definition of the Fenchel-Moreau subdifferential and in
(38) the definition of cyclic monotonicity (see Definition 2.1(i)). In this case, b-
convexity is equivalent to convexity plus lower semicontinuity. On the other hand,
Theorem 6.4 corresponds to the choice

£\ x*(y _x) ifx = X0,
b(x,y,x7) = { min{x*(y — x),0}  ifx # xo,

where (38) is the considered R(x) property, and b-convexity is nothing else than
lower semicontinuity and quasiconvexity.

QUESTION. The class of operators fulfilling (R(x)) at every point of their domain
is located between monotone and cyclically monotone operators (see Proposi-
tions 5.2, 6.2 and comments after Definition 6.1). However we do not know which
of these inclusions is strict.
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ABSTRACT. We introduce a notion of cyclic submonotonicity for multivalued
operators from a Banach space X to its dual. We show that if the Clarke
subdifferential of a locally Lipschitz function is strictly submonotone on an
open subset U of X, then it is also maximal cyclically submonotone on U,
and, conversely, that every maximal cyclically submonotone operator on U is
the Clarke subdifferential of a locally Lipschitz function, which is unique up to
a constant if U is connected. In finite dimensions these functions are exactly
the lower C! functions considered by Spingarn and Rockafellar.

1. INTRODUCTION

We deal with the integration of a multivalued operator considered as the inverse
process of taking the subdifferential of a function. This important question has been
tackled by several authors: see for instance [20] (for the Fenchel-Moreau subdiffer-
ential of a convex function), [12], [19], [I7] (for the Clarke subdifferential in finite
dimensions), [4], [26] (for the Clarke subdifferential in infinite dimensions), [I]] (for
the moderate subdifferential of Michel-Penot in finite dimensions) and [25], [27] (for
various subdifferentials of a lower semicontinuous function). The first mentioned
result concerns the case of monotone operators: in [20] Rockafellar shows that any
cyclically monotone operator T is included in the subdifferential of a lower semicon-
tinuous convex function, with equality if 7' is maximal cyclically monotone. Janin
[12] introduces a concept of cyclic submonotonicity in finite-dimensional Euclidean
spaces and uses it to integrate (in the preceding sense) locally bounded operators
satisfying that condition into locally Lipschitz functions. In a different context, a
concept of cyclicity has also been used by Qi in [19], where the author characterizes
operators that coincide with a subdifferential of some locally Lipschitz function, us-
ing the Lebesgue measure and (implicitly) the Rademacher theorem. Elaborating
upon these ideas, Borwein and Moors [3] introduce and study the class S.(X) of
essentially smooth (locally Lipschitz) functions, that is, functions f whose Clarke
subdifferential 9€ f is single-valued in the complement of a Haar null set. One of
the main features of this class stems from the fact that for every f € S.(X), the
problem of finding a locally Lipschitz function g such that 9¢g C 9 f has a unique
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solution modulo a constant (i.e., g = f + ¢). In [4], Borwein, Moors and Shao
extend the results of Qi [19] to separable Banach spaces, using line integrals and
Christensen’s generalization of the Rademacher theorem via Haar null sets. Their
result is further improved by Wang [26], who characterizes the class of integrable
locally bounded operators in separable Banach spaces. These operators are called
in [19] and [26] “cyclically normal”.

In another line of research, Spingarn [24] showed that in finite dimensions, lower
C! functions (i.e., functions arising as maxima of compactly indexed families of C"*
functions) are characterized by the fact that their Clarke subdifferentials are strictly
submonotone operators with nonempty values. This last notion was extended to
infinite dimensions by Georgiev in [10], [11] (see the definition of directional strict
submonotonicity in Section 2). Functions with such subdifferentials (herein called
subsmooth) are always regular (in the sense of Clarke [6]) and semi-smooth (in the
sense of Mifflin [14]), see [24] and [11]. In particular, subsmooth functions have
“small” (namely minimal w*-cusco) Clarke subdifferentials. Let us recall that,
in general, Lipschitz functions have “generically” very large Clarke subdifferentials
([26]). In finite dimensions, as the notions of strict submonotonicity and directional
strict submonotonicity coincide [I1], a function f is subsmooth if, and only if, it is
lower C1.

Our main results rely on a notion of cyclic submonotonicity introduced here; in
finite dimensions it coincides with the definition of Janin [I2]. Using this concept,
we show that if U is an open subset of a Banach space X, then

e the subdifferential of every subsmooth function (defined on U) is maximal
cyclically submonotone (on U);

e if U is connected and f, g are subsmooth functions on U such that 9¢ f =
0%g, then f = g + ¢ for some constant ¢ € R; and

e every maximal cyclically submonotone operator on U is the subdifferential
of a subsmooth function defined on U (unique up to a constant if U is
connected).

A specific feature of our approach is that it does not depend on results from
measure theory and is valid beyond the class of separable spaces.

Notation. Let us now fix our notation. We denote by (X, ||.|) a Banach space, by
Sx its unit sphere and by (X*, ||.||) its dual space. We also denote by B, (x) (resp.
B, [z]) the open (resp. closed) ball with center  and radius r, and by B} (z) (resp.
B?[z]) the same objects in X*. Let 2% be the set of all subsets of X*, and R (resp.
N) be the set of all real (resp. nonnegative integer) numbers. For any k € N, we
set N :={1,2,...,k}. For any z,y in X, we denote by [z,y] := {z: =tz + (1 —t)y,
0 <t < 1} the closed segment with endpoints x,y. For any subset K of X and any
d > 0, we consider the J- (open) neighborhood Bs;(K) of K defined by Bs(K) :=
{reX:IyeKkK,|r—y| <} Wealso set diam(K) :=sup{|lz—y| : 2,y € K} for
the diameter of the set K. We denote by cone(K) the cone generated by K, i.e.,
cone(K) := {\z: A >0, z € K}. For any subset A of X*, we denote by @ (A)
the w*-closed convex hull of A. Finally, throughout the paper we shall assume that
all functions f are locally Lipschitz and we shall denote by dom(f) their domain.
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2. PRELIMINARIES

Given a multivalued operator T : X = X*, we denote by dom(T) the set {x €
X :T(z) # 0} and by Gr(T) := {(z,2*) € X x X* : 2* € T(x)} (or simply T if no
confusion may arise) the graph of 7. We also define the operators @ (T') by

(1) 0" (T)(x) := e (T (x))
forallz € X and T : X — 2% by
Ha;}sin X, IH{xf} in X*: xf € T(ay)

(2) ¥ eT(r) =
r = lim z;, ¥ = w*-lim =}
K] 7

where {z;}; and {x}}; denote, respectively, nets in X and in X*. Note that Gr(T) =
—Gr(T)H.wa .

The operator T : X == X* is said to be locally bounded at x € X if there exist
M > 0 and a neighborhood B, (x) of « such that v € B,(z) and v* € T'(u) imply
|lu*]] < M. Then T is called locally bounded on a subset U of X if T is locally
bounded at all z € U. (Note that U is not necessarily a subset of dom(7').)

Furthermore, the operator T is said to be w*-upper-semicontinuous at x € X if
for every w*-open set W D T'(x), there exists an open ball B, (x) of z such that
T(u) C W for every u € By(z). Let us note that if T is locally bounded on U, then
T (given by relation (@)) is w*-upper-semicontinuous at every = € dom(7T) N U.

w¥*-cusco mappings. A multivalued mapping 7" : X = X* is said to be
w*-cusco on U ([2], [B], e.g.), if it is w*-upper semicontinuous with nonempty w*-
compact convex values on U. A w*-cusco mapping on U that does not strictly
contain any other w*-cusco mapping with domain in U is called minimal w*-cusco
onU.

Given an operator S, we can consider w*-cusco mappings 7' that are minimal
under the property of containing S. In the important case of the following propo-
sition, one can give a complete description of the minimal (in fact least) element of
the family of w*-cusco mappings containing S.

Proposition 1. Let S be a densely defined locally bounded operator on an open
subset U of X with values in X*. Then the family of w*-cusco mappings containing
S has a least element T given by the formula

(3) T(z)=c0" () {S():2' € B(z) N dom(9)}"

e>0

Proof. In [2, Proposition 1.3] (see also [15, Proposition 1.2]), the following formula
for the operator T is given:

T(z) = ()@ {S(z'): 2’ € B-(x) N dom(S5)}.
e>0
In order to justify (B]), let us set

R(@) = (5@ @ € B.(@) ndom(9)}"

e>0

Since S is locally bounded on U, it is easily seen that R(x) = S(z) (given by
relation (2) and that R is the smallest w*-upper-semicontinuous multivalued map-
ping containing S. Thus R(z) C T(z) and @" (R(z)) C T(x) for each = € U.
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Since @" (R(z)) is w*-cusco (see [5, Proposition 2.7], e.g.) and T is the minimal
w*-cusco containing S, we get co% (R)=T. 0

The preceding proposition has an interesting (and immediate) consequence on
the representation of the Clarke subdifferential in certain Banach spaces. We recall
that the Clarke generalized derivative of a locally Lipschitz function f at a point
x € dom(f) is defined for all u € X as follows:

fly+tu) — f(y)

fo(x;u) = limsup ,
(y:t) = (2,0+) t
and the Clarke subdifferential of f at x € dom(f) by
(4) O f(z) = {z* € X*: (", u) < fo(x,u),Yu € X}.

For all z € dom(f), we have 9 f(z) # 0.

Let us also recall the definitions of other usual subdifferentials that will occur in
the sequel:

e the Fréchet subdifferential 0% f(z)

0" f(x) = {a" € X" : f(y) > f(2) + («",y — x) + oy — x),Vy € X},

where 0 : X — R is some real-valued function satisfying lim,,_.g % = 0;
e the Hadamard subdifferential 01 f (x)

f(z+tw) - f(z)

o ={z* e X*: (z*,u) < liminf ,Vu € X}.
@) ={o @< tmint : we x)
Let us note that if f is locally Lipschitz, then for all u € X,

(5)
df(z,u) = lming TET =@
(w,t)—(u,0F) t o or .

= f/(xvu)a

so that the Hadamard derivative coincides with the Gateaux derivative of f when
they exist.

Let us now recall that in every Asplund space, the Clarke subdifferential 9 f
of a locally Lipschitz function f is given by the following formula of Preiss ([18]
Remark 2.3]):

(6) 0% f(x) = (@ {D" f(2') : 2’ € B-(x) ndom(D" f)},
e>0
while, if X has a Gateaux smooth renorming,

(7) 0% f(x) = (@ {D" f(2') : 2’ € B.(z) N dom(D" f)},
e>0
where D f(z) (resp. D¥ f(z)) denotes the Fréchet (resp. Hadamard) derivative of
f at z and dom(D¥ f) (resp. dom(D¥ f)) is the domain of D¥ f (resp. D f).
Since 3¢ f is a w*-cusco mapping ([3]), combining Proposition [ with formulas
(B) and (@), we obtain in view of [I8, Theorem 2.4] the following corollary.

Corollary 2. For every (locally Lipschitz) function f on X we have:
(i) of X is an Asplund space, then

*
w
)

(8) 09 f(z) =2 () {DFf(a’) : 2’ € B<(x) N dom(DF f)}

e>0
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(ii) if X has an equivalent Gateauz differentiable norm, then

9) 0 f(z) =70 (\{DFF@) : & € Bolw) ndom(DF )} " .

e>0

Submonotone and strictly submonotone mappings. In 1981, J. Spingarn
[24] introduced the notion of a strictly submonotone mapping in a finite-dimensional
space. His definition is naturally extended to infinite dimensions as follows: a
multivalued mapping T:X = X* is said to be strictly submonotone (for short, s-
submonotone) at x € X provided that for any £ > 0, there exists § > 0 such that

(x] — a5, 21 — a2)

10 > —¢
(10) o~z =

whenever z; € Bs(x), zf € T(x;), i = 1,2, and z1 # x2.

The operator T:X = X is called submonotone at x, if (I0) holds under the
additional assumption xzo = z. (Note that T is submonotone at every = ¢ dom(7')
and s-submonotone at every z ¢ dom(T').)

Appropriate directional versions of these notions have been introduced in [I0]
(see also [lljﬂand [16]): an operator T : X = X* is called directionally strictly
submonotond (for short, ds-submonotone) at x, if for every e € Sx and & > 0, there
exists § > 0 such that

(11)

whenever z; € Bs(z), xf € T(z;), i =1,2, 1 # x2 and || e el < 4.

The operator T : X = X* is called directionally submonotone (for short, d-
submonotone) at x, if (II) holds under the additional assumption zs = x.

It is easily seen that if (1) holds uniformly for all directions e € Sx, then T
is s-submonotone at z. Similarly, if (II) holds uniformly for xo = x, then T is
submonotone at z. If X = R™, the compactness of the unit sphere in R" entails
that an operator T' is ds-submonotone (resp. d-submonotone) if, and only if, it is
s-submonotone (resp. submonotone).

Given a nonempty subset U of X, we say that T is s-submonotone (resp. sub-
monotone, ds-submonotone, d-submonotone) on U, if T has the corresponding prop-
erty at every x € U.

Let us recall from [11, Theorem 2.4] that every ds-submonotone operator T' on
X is locally bounded on int dom(T"). The definition of ds-submonotonicity (relation
() is reminiscent of monotonicity and can be considered as a limiting variant of
it. It can also be considered as a mild continuity condition, since any continuous
function g : U — X* can be seen as a (single-valued) s-submonotone operator on U.
Thus, every monotone operator is s-submonotone, while the converse is not true.
The class of s-submonotone operators is stable under addition and is relatively
large.

(x7 — 25,71 — T9)

|1 — =2

3. A SUFFICIENT CONDITION FOR INTEGRATION

In this section we give sufficient conditions for integrating multivalued operators.
We first need some terminology. Given a segment [z,y], a finite sequence {z;}¥_;

Léstrictly submonotone” according to the terminology of [I0], [TT].
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of [x,y] is called a subdivision of the segment [x,y], if 1 = x, 2, = y and

k-1
(12) D i —aill =z =yl
i=1

A polygonal path [wp]7" is a union of consecutive segments; it is said to be closed
if wy, = wi. A finite sequence {z;}], is called a subdivision of the path [ws]}y',
if there exists an increasing sequence 1 = k1 < ko < ... < k;, = n such that for
1<h<m-1, {mz}izz; is a subdivision of the segment [wp,, wp11].

The following definition is a reformulation in infinite dimensions of a property
introduced by Janin [12] for the class of bounded operators defined on compact
subsets of R™.

Definition 3. An operator T : X = X* is called radially cyclically submonotone
on a subset U of its domain if for any closed polygonal path [ws]}* ; C U and any
€ > 0, there exists 0 > 0, such that for any subdivision {z;}7_; of [wy]}"_, satisfying
|zip1 — 2] < & (for i =1,2,...,n) and any =} € T(x;) one has

n—1
(13) Z<J)Z,$i+1 — J)i> S e.

i=1

The proof of the following result borrows ideas from [12], mainly in steps 1 and

4.

Theorem 4. Let T : X = X* be locally bounded and radially cyclically submono-
tone on an open subset U of dom(T). Suppose that T is d-submonotone, or more
generally, that for any x € U, 2* € T(z), u € X one has

(14) liminf  sup (y* —a™,u) >0.
t—0+ y* ET(ertu)

Then there exists a locally Lipschitz function f : U — R such that T C 07 f on U.
If, in addition, T is submonotone, then T C OF f on U.

Proof. Case 1: Let us first suppose that U is connected. Then let V' be the set
of (z,y) € U x U such that [z,y] C U. Given (z,y) € V and o > 0, let us denote
by Se(x,y) the set of subdivisions {z;}?; of the segment [z, y] such that z; := «,
Ty =y, and ||z;41 — 4] <o for i =1,2,...,n — 1.

We counsider the function g(-,-) : V — R U {+oc0} given by

n—1
(15) g(z,y) := inf sup {Z@Miﬂ —xi) s {zihily € Solz,y), 2] € T(fﬂi)} :

i=1

Since T is locally bounded, a compactness argument shows that for any (z,y) € V,
there exist & > 0 and p > 0 such that for all (z/,y") € B,(x) x B,(y), we have
(@',y') € V and

(16) lg(a’,y")| < Kl —o'||.

Let us now fix some zg in U and define f : U — R U {+o0} as follows:

(7) J(@) = sup { ) g(wh,whﬂ)} ,

h=1
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where the supremum is taken over all m > 2 and all polygonal paths [wp]7* , with
wy = xg and wy, := x such that [wp,wp41] C U for all h =1,2,...,m — 1. (Note
that this family of paths is nonempty, since U is open and connected.)

Step 1: The domain of f is nonempty.

We shall show, in particular, that f(xo) = 0. Since f(zg) > g(zo,zo) = 0, it
suffices to show that f(z¢) < 0. To this end, let us suppose that f(xo) > 0 and
take any 0 < € < f(xg). By () we infer that for some closed polygonal path

m—1
[wp]pry (with w1 = wy, = xo) we have > g(wp,wn11) > €. Then according to
-1

h—

(15, for any 6 > 0 we can find a subdivision {z;}?_; of the path [ws]}'!_; (where

x1 = xp = x) and {zf}7, in X* such that = € T(x;), ||zit1 — ;]| < d for all
n—1

i>1,and > (xf,x;41 — x;) > €. Since T is radially cyclically submonotone, we
i=1

get a contradiction.

Step 2: f(y) = f(x) +g(x,y), V(z,y) €V.
Take any r < f(x) and choose a polygonal path [w]}* ; in U with w; = z¢ and

m—1
wy, = x such that Y g(wp, wpy1) > r. Set w1 = y. It follows from ([I7) that
h=1

1) 2 S 9wn, wnsr) > 7+ g(tmy wms1) = 7 + g(2,y).
h=1
Since r < f(z) is arbitrarily close to f(z), the proof is complete.
Step 3: f(T) < +oo for all T € U, and f is locally Lipschitz on U.
Take any £ € U and choose a polygonal path [ws]7 ; in U with w; = Z and
Wy, = xg. It follows from Step 2 that for y = x¢ and for £ = w,,_1, we have

0= f(xo) > f(wm—l) + g(wm_1,$0)7

which shows that f(wp,—1) is finite. Taking now y = wy,—1 and £ = wy,_2, we
conclude that f(wy,—2) is finite. Proceeding like this, we finally conclude that
f(@) = f(w1) < +00. Now to show that f is locally Lipschitz, given & € U we take
x =y = and p > 0 such that for any 2/,y’ € B,(Z) we have (2,y’) € V and the
estimate in ([8]). It follows from Step 2 that

[f() = f(@')| < max{—g(a',5/), —g(y/, )},

which yields that f is locally Lipschitz on U.

Step 4:
(18) T(z) Coff(x) Vxel.

Fix 2 € U and 2* € T'(z). Let r > 0 be such that B,.(x) C U. For every u € Sx,
we have by Step 2 that

flattu) — f@) _ gleattu)
t - t

Since f is locally Lipschitz, it suffices to show that for any u € Sx and any ¢ > 0,
there exists § > 0 such that

,forall t €10, r[.

(19) inf g(@,z +tu) > (%, u) —e.
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From (I4)), we can associate to any € > 0 some ¢ > 0 (depending on u) such that
for all s € ]0,d[ we can find y* € T'(z + su) satisfying

(20) ') > (@) — e
Fix 0 <t < 4. Given ¢ > 0 and any subdivision {t;} ; of [0,¢] such that
sup(tit1 — ti) < o,
i
we can find z] € T(z + t;u) such that
<x;,kau> 2 <:c*,u> —E.

Setting x; := x + t;u, we observe that {x;}I" | € Sy(x,x + tu) and

=1
n—1 n—1
D olahmigr — @) =Y (@], (b — ti)u)
=1 =1
n—1
> ((z*,u) =€) Y (tips —ti) = (2%, u)t — et.
i=1

Since o > 0 can be taken arbitrarily small, we obtain
g(x, x4+ tu) > (z*, tu) — te,

and relation (I9) follows for the § introduced above.

Note that, if we assume in addition that T is submonotone, then the above ¢ (in
Step 4) does not depend on the direction u € Sx; hence (I9) yields z* € 9F f(z).

Case 2 (general case): Let U be an arbitrary nonempty open set. Then U can be
written as a disjoint union of open connected sets U;. Applying the result of Case
1 for each i, we obtain a locally Lipschitz function f; on U; with T'(x) C 0¥ f(z)
(resp. T(x) C OF f(x), if T is submonotone), for all z € U;. Define f : U — R by
f(x) = fi(x)(x), where i(x) is the unique index such that = € Uj(,. It follows that
f is locally Lipschitz and T C 0¥ f (vesp. T C 0F f). d

4. CYCLIC SUBMONOTONICITY

In Theorem [ we obtained a sufficient condition ensuring that an operator T is
included in the subdifferential O f of a locally Lipschitz function f. In this section
we reinforce Definition [B] (by using a notion of approximate subdivisions of closed
polygonal paths) to ensure the coincidence of T' with the subdifferential 9€ f. This
leads to a notion of cyclic submonotonicity, which turns out (in Section 5) to be a
necessary and sufficient condition for the integration process described in Theorem
Its relation with radial cyclic submonotonicity is given in Proposition [T7

Let us first give the definition of a d-subdivision of a closed polygonal path.

Definition 5. Given 6 > 0 and a closed polygonal path [wy]7",, we say that
{z;}7 is a ¢ -subdivision of [wp]7*, if £, = z1 and

(i) {zitiey € Bs([wnlpy),

(ii) ||wig1 — xs]| < 6, for 4 € N_q, and

(ili) there exists a finite sequence {kx}}" , with 1 =k < ky < ... < kyp, :==1n
such that for 1 < h < m — 1 we have
Tit1 — X4 Wh+41 — Wh

kn <i<k o —
w<i<hhn = IR T Tows = anl

| <.

We are now ready to give the following definition.
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Definition 6. An operator T is called cyclically submonotone, if for any closed
polygonal path [wp]7"; and any € > 0, there exists ¢ > 0 such that for all J-
subdivisions {x;}7_; of [wy]}", and all } € T'(x;), one has

n—1 n—1
(21) Z<$;7xi+1 —x;) < €Z i1 — 2]
i=1 i=1

If U is an open subset of X, an operator T is said to be cyclically submonotone
on U if (ZI) holds for closed polygonal paths and d-subdivisions in U. Furthermore,
a cyclically submonotone operator T on U is called maximal cyclically submonotone
on U, if there is no cyclically submonotone operator S # T such that T'(z) C S(x)
forall z € U.

Let us note that, as follows from (I2)), the length of a subdivision of a path is
always equal to the length of the initial path. On the contrary, the definition of a §-
subdivision is more general, since no direct constraint on its length is imposed. This
flexibility in Definition [§ enables us to show that, unlike the case of radial cyclic
submonotonicity, every cyclically submonotone operator is also ds-submonotone.

Proposition 7. Every cyclically submonotone operator on U is ds-submonotone
on U. Consequently, if U C intdom(T), then T is also locally bounded on U.

Proof. Let g € U, ¢ > 0 and e € Sx. Since U is open, there exists A > 0 such
that [zg, 20 + Ae] C U. Let m = 3, w; = 29 = w3 and we = xg + Ae. For ¢ > 0
and for the path [wp]3_,, take § > 0 as in Definition [6, and set 8’ = 6/2. Then if

1,22 € By (w0) are such that 1 # z2 and || =22 —ef| < ¢’, we can easily check

that for x5 = z1, {z;}?_, is a d-subdivision of the path [wp]3_,. So relation (2))
yields (), and T is ds-submonotone at zg. Since zg is arbitrary in U, it follows
that T is ds-submonotone on U. The last assertion follows from [IT, Theorem
2.4]. O

Remarks. 1. Every cyclically submonotone operator is radially cyclically submono-
tone on every open subset U of its domain. Indeed, if ) is true and {x;}}, is

n—1 n—1
a subdivision of [wy|}’, in U, then > ||zip1 — ai|| = Y ||wit1 — wil]. It follows
i=1 i=1

n—1
that (21)) yields (@3) for &’ = (> [Jwir1 — wi) L.
i=1
2. It is obvious that every C;clically monotone operator is cyclically submono-
tone. On the other hand, an operator can even be strongly monotone, without
being cyclically submonotone, as one can see from the example (also used in [9] for
a similar purpose) of the operator 7' : R? — R?, with
T(e,y) = (5 —y.a+3).
3. Cyclic submonotonicity is a separably determined property, i.e., an operator
T : X = X* is cyclically submonotone on U if, and only if, for every separable
closed subspace Y of X, the operator T' |y: Y = Y™* (defined for all y1,92 € Y by
(T|y(y1),y2) := (T (y1), y2)) is cyclically submonotone on UNY.

We now show that if T is locally bounded and cyclically submonotone (resp.
ds-submonotone) on U, then so is the w*-cusco generated by T. Let us recall that
if U is an open subset of dom(T'), the local boundedness assumption on T' becomes
superfluous, since it follows from its ds-submonotonicity (see Proposition [T).
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Proposition 8. If T is locally bounded and cyclically submonotone (resp. ds-sub-
monotone) on U, then the operators T and " (T) are also cyclically submonotone
(resp. ds-submonotone) on U. In particular, the w*-cusco generated by T is cycli-
cally submonotone (resp. ds-submonotone) on U.

Proof. Tt is easily seen from (21]) that v (T) is cyclically submonotone. In order
to prove that T is cyclically submonotone, let us consider a closed polygonal path
[wr]p*y € U and € > 0. Let us take § > 0 guaranteed by Definition [6] for the
operator T, and let us consider any d-subdivision {a;}}; of [wp]7; in U and
xf € T(z;). Then there exist nets (x;(A))aea and (2} (A))rea such that z7(N\) €

T(x:(N), (z:(N) -, z; and (zF(N)) o, xf. Since {z;}!" , is a finite sequence,

there exists A\g € A such that {x;(\)}7, is a d-subdivision of [wp]7-, for all A = Ao
(where = is the preorder relation of A). It follows from (21]) that

n

D @),z (V) —m(N) <Yz () — z(V)]-
i=1 i=1
Taking limits on both sides, we obtain

n n

S et v —ai) <€ |z — @il

i=1 i=1

This shows that T is cyclically submonotone; hence so is the operator @® (T).
Since now T is locally bounded on U, we have
T(x) = ({T(=) -2’ € Be(w) N dom(T)}
e>0

for all z € U. Using Proposition [, we conclude that Ew*(T) is the minimal w*-
cusco operator containing 7'. This finishes the proof. The assertions concerning
ds-submonotonicity can be proved likewise. O

The following proposition reveals an important feature of cyclic submonotonicity.

Proposition 9. Let U be an open subset of dom(T'), and T a cyclically submono-
tone operator on U. The following statements are equivalent:
(i) T is w*-cusco on U;
(ii) T is manimal w*-cusco on U;
(iii) T s mazximal ds-submonotone on U;
(iv) T is mazimal cyclically submonotone on U.

Proof. Implication (ii)=-(i) is obvious. Assume now that (i) holds. Using Proposi-
tion [7] we conclude that T is ds-submonotone on U. Since T is w*-cusco, from [11]
Lemma 3.2] it follows that T is maximal ds-submonotone on U. Hence (i)=>(iii).

(iii)=-(iv): Let S be a cyclically submonotone operator whose graph contains
the graph of 7. Then S is ds-submonotone (see Proposition [7); hence it coincides
with T

(iv)=-(ii): Since T is locally bounded on U C int dom(T"), Proposition B guaran-
tees that T' is w*-cusco. Assume that there exists S C T such that S is w*-cusco.
Obviously S will also be cyclically submonotone. Since (i)=-(iv), S is maximal
cyclically submonotone, whence S = T. (]
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Remark 10. We recall from [23] that if X is Asplund (resp. X has a Géateaux
differentiable norm), then every minimal w*-cusco operator is single-valued and
(Il = 1|-II) upper semicontinuous (resp. (||.|| — w*) upper semicontinuous) at every
point of a Gs dense set.

Corollary 11. Let T be a cyclically submonotone operator on an open subset U.
Then ¢ (T') is mazimal cyclically submonotone on U.

Proof. Since T is locally bounded, the operator S := @" (T) is w*-cusco. By
Proposition[§, S is also cyclically monotone. The conclusion follows from Proposi-
tion [ O

Let Z be a closed subspace of X and define the multivalued operator S : Z = Z*
as follows:

(22) S(z)=A{z" € Z* : 32" € T(z) such that z* = z*|2}
(where z*|z denotes the restriction of the functional z* to Z).

Lemma 12. (i) If T is locally bounded and w*-cusco on an open subset U, then S
is 0(Z*, Z)-cusco on U N Z, where o(Z*,Z) denotes the w*-topology on Z*.

(ii) If T is mazimal cyclically submonotone on U and if U C intdom(T"), then S
is mazximal cyclically submonotone on U N Z.

Proof. Assertion (i) follows easily since S has a 0(Z*, Z)-closed graph on UNZ. To
show (ii), let us observe (from Definition [6]) that if 7" is cyclically submonotone on
U, then S is cyclically submonotone on U N Z. By Propositions [ and [0] we have
that T is locally bounded and w*-cusco. It follows by (i) that S is o(Z*, Z)-cusco
on U N Z; so the proof finishes by a new application of Proposition[d (i)—(iv). O

5. MAIN RESULTS

Throughout this section U will always denote a nonempty open subset of X. Let
us give the following definition.

Definition 13. A locally Lipschitz function f : U — R is called subsmooth if 9€ f
is ds-submonotone on U.

Every subsmooth function f is regular (see [24], [I1, Theorem 4.1]), a locally
Lipschitz function f being called regular ([6]) if f'(z,d) = f°(x,d) for all d € X.
It follows that

(23) o°f=0m%.

In the particular case where X has some regularity, subsmoothness is characterized
as follows.

Proposition 14. Let X be an Asplund space (resp. X has a Gateaux differentiable
renorming). Then a locally Lipschitz function f : U — R is subsmooth if, and only
if, OF f (resp. 0 f) is ds-submonotone on U.

Proof. The “necessity” part is obvious. To show the “sufficiency” part, let T = 9 f
(resp. O f). Since f is locally Lipschitz and T is included in 9 f, it follows
that T is locally bounded. Using Corollary [2 and Proposition Bl we obtain that
0¢ f is ds-submonotone, hence that f is subsmooth. (Note that this implies that
dom(07 f) =U.) O
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It follows from Definition and the comments after the definition of ds-sub-
monotonicity (in Section 2) that every convex or continuously differentiable (i.e.,
C1) function is subsmooth. One of the main results in [24] is the following charac-
terization of subsmooth functions in finite dimensions: a (locally Lipschitz) function
f on U C R™ is subsmooth if, and only if, it is lower C', a function f being called
lower CV if for each xy € U, there exist a neighborhood V of zy, a compact set
S and a jointly continuous function g : V x S — R such that, for all x € V|
flx) = max g(z,s) and D,g (exists and) is jointly continuous. In the last section,

we will give some typical examples of subsmooth functions in infinite dimensions.
We now state the main results of the paper.

Theorem A. For a locally Lipschitz function f: U — R, the following are equiv-
alent:

(i) f is subsmooth;

(ii) 0C f is mazimal cyclically submonotone on U.

Theorem B. Let U be an open connected subset of X, and f1, fo two subsmooth
(or, more generally, reqular) functions on U such that ¢ f; = 0% fa. Then f1 =
fa + ¢ for some c € R.

Theorem C. If T : X = X* is a multivalued operator and U an open subset
of dom(T"), then T is mazimal cyclically submonotone on U if, and only if, T =
o¢f = o f for some subsmooth function f : U — R, which is unique (up to a
constant) on every connected subset of U. If, in addition, T is submonotone, then

T =0Ff.

Proof of Theorem A. The implication (ii)=(i) is clear in view of Proposition[q and
Definition

For the implication (i)=(ii), set T := 9 f. Since T is w*-cusco, in view of
Proposition[ (i)=-(iv), it clearly suffices to show that T is cyclically submonotone.
To this end, consider any closed polygonal path [wg]}* ; € U and any € > 0. Set
C = [wp|7, and

Wh+1 — Wh
Ep = T

[[wh41 — wn|
for h € N1 :={1,2,....,m—1}.

Since T is ds-submonotone, it follows that for every x € C and h € N,,,_1, there
exists a(z, h) > 0 such that

*_ * _
(of —af, 02 —a1) _

24
(24) Tor —zal

whenever x1 # o with ||z; — z|| < a(z,h) , zf € T(z;) (i =1,2) and
L1 — T2

o=l

Set f(x) == hrgin a(z, h), and note that (4] holds for all z1 # x2 such that z; €

m

Bﬁ(x)(l‘) (Z = 1, 2) and :Cl%f:z” S heU Bg(m)(eh).

—enll < a(z, h).

[E
m—1

Let § > 0 be a Lebesgue number of the open covering (Bﬁ(x)(x))zec of the
compact set C, i.e.,

(25) Vw € C, 3z € C: Bs(w) C Bg(y().
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Let us consider any é-subdivision {z;}7_; of C' = [wy]}*.;. Since f is locally Lip-
schitz, using Lebourg’s mean value theorem ([13]) on every segment [x;, z;41] (for
i € N,_1), we infer the existence of z; € |z;, xi41[ and zf € T'(%;) such that

(26) f@ip1) = f(@:) = (2], @iv1 — @),

Adding the above equalities, we have

n—1

D (2w —w) =0,

i=1
which yields

n—1 n—1

(27) D @ mig —w) = (@] — 2w — ).

i=1 i=1

Since {x;}7~, is a d-subdivision of C, it follows from (24)) and (2H) that for every

=1
i € Nn—l;
Ti+1 — L5 Z; — g
wf -, Ty (-, Y < e
R P LA ) P ks
which, combined with (7)), yields
n—1 n—1
Dot i —w) =y ||l — .
i=1 i=1
This finishes the proof. U

Before proceeding to the proof of Theorem B, we need the following easy result.

Lemma 15. Let f: U — R be a locally Lipschitz function, let Z be a closed linear
subspace of X, and consider the function g : ZNU — R defined by

(28) g(z) = f(z) forallz e UN Z.

IfS:7Z = 7% is as in @2) for T = 0" f, then we have:

(1) S(z) Cofg(z) forallzeUN Z.

(ii) If for some xog € UNZ we have 0% f(xo) = 0€ f (o), then S(zo) = 0" g(z0) =
9% g(z0).

Proof. (i) Let z € UN Z and 2* € S(z). Then z* = z*|z for some z* € 9% f(z).
Since f is locally Lipschitz, by () we conclude that ¢'(z,u) = f/'(z;u) > (z*,u),
for all u € Z. It follows that 2* € 0¥ g(z).

(ii) Suppose now that for some zg € U N Z we have 0% f(zo) = 0 f(z0). By (i)
we have S(zo) C 0H g(xo) C 0g(wo). Let us show that 9% g(wg) C S(zp). Indeed,
let 2 € 9%g(x0). Then from (@) we have

(25, uy < g°(zo;u) < f(xo;u), for allu € Z.

Using the Hahn-Banach theorem, we conclude the existence of some z* € X* such
that z*|z = z* and (z*,.) < f°(x;.), so that x* € 9% f(wg) = 0™ f(x). It follows
that z* € S(zo). O

Proof of Theorem B. Suppose that f1, fo are two subsmooth functions on U such
that € f; = 9 f,. Without loss of generality, we suppose that 0 € U. For any
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x € X, let us set Z = span[z], g; = fi |z (the restriction of f; to Z, i = 1,2) and
T = 0" f,. By ([23) we have
T=0"fi=0%f =0%f,=0"fo,
and by Lemma [TH(ii),
(29) g1 =0% = 0%gs = 0% go.

Since Z is a one-dimensional space (in fact, separable would suffice), it follows from
[3, Theorem 5.12] (see also [5l Section 4.2]) that the regular functions g, go are
essentially smooth.

Case 1: Suppose that U is convex.

Then the set U N Z is connected; so relation [29) yields g1 = g2 + ¢ for some
¢ € R (see [5, Proposition 4.12] or [3, Proposition 5.9]). Since g; = fi|z, we obtain

fi(@) = fo(x) = ¢ = £(0) = f2(0).

Since z is arbitrarily chosen, we obtain f; = fo +con U.

Case 2 (general): Since U is open and X is locally convex, from case 1 we
conclude that f; — fs is locally constant on U. Since now U is connected, it follows
that f; — fo is constant on U. The proof is complete. (]

Let us now proceed to the proof of Theorem C. We shall need the following
lemma.

Lemma 16. Let f : U — R be locally Lipschitz, xo € X, and let Y be a separable
subspace of X. Then there exists a separable subspace Z of X containing Y and xq
such that for the function g : ZNU — R given by g = flunz (as in 28)) we have

(30) g°(zo;u) = f°(zo;u) for allu € Z,
and consequently
(31) O%(xo) = {2 € Z* : 2" = x*|z,2" € 0% f(x0)}.

Proof. Let Yy = span[Y, xg] be the closed linear space generated by Y and {zo},
and let Dy be a countable dense subset of Yy. Then for every d € Dy, there exist
{Zn}n>1 in X and {t, },>1 in |0, 1] such that (z,) — o, (t,) — 0" and

tn n

(32) fo(xo;d) <

Set Ao(d) = {zn : n € N} and Ag = U p, Ao(d). Consider the separable space
Y1 = span[Yy, Do), let D1 be a countable dense subset of Y7 and define (using (32))
A1(d) for all din Dy as above and Ay = UdeD1 A(d). Proceeding like this, we obtain
an increasing sequence of closed separable subspaces Y;, of X and a sequence (D),,)
of countable subsets such that D,, is dense in Y,,. Set

Z:Um

and g = f|z. Then for any v € Z and € > 0 there exist n € N and d € D,, such
that |Ju — d|| < e. Using (82), we conclude easily that g°(zo;d) = f°(xo;d). Since
the functions u — ¢°(zo;u) and u — f°(zo;u) are Lipschitz, (30) follows. Relation
(BI) is now an easy consequence of ([B) and the Hahn-Banach theorem. (]
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Proof of Theorem C. The sufficiency part following from Theorem A, we only have
to show the necessity part.

To this end, let us suppose that 7" is maximal cyclically submonotone on U. In
particular, T' is a locally bounded ds-submonotone and radially cyclically submono-
tone operator on U (see Proposition [1 and Remark 1). It follows by Theorem [4
that T'(x) C 0H f(z) for all z € U, where f is given by (7). Let us show that
T(z) =0 f(x) for all x € U.

Suppose that the contrary holds. Then for some 2o € X and xf € 9f%(xo),
we have z; ¢ T'(xg). By Proposition [0 T'(z¢) is a nonempty w*-closed convex set;
hence there exists u € X such that
(33) (wg,u) > sup (2, u).

z* €T (xo)
Set Y = span|zg, u], and consider the separable subspace Z of X given by Lemma
[6land g = f|z. Let S: Z = Z* be as in (22), i.e., for every z € U N Z,

S(z) ={z"€ Z": 2" =a”|z for some z* € T(z)}.
Then, by Lemma [[Z(i), S is 0(Z*, Z)-cusco on U N Z, and, by Lemma [T5(i),
S cofly.
Since S has nonempty values on U N Z, the above relation yields that S(z) =
{D* g(z)} for all points = for which the Hadamard derivative D g(x) exists. Since
Z is a separable Banach space, it admits a Gateaux smooth renorming. It follows
that the Clarke subdifferential 9€g is given by (@) and is the smallest o(Z*, Z)-
cusco mapping whose graph contains the graph of the Hadamard derivative D g.
Since S is o(Z*, Z)-cusco, it follows that Gr(9g) C Gr(S), for all x € U. Since
Gr(0"g) € Gr(0%g), we conclude that
S=0"g=0% onUnNZ.
In particular, S(z¢) = 0% g(z0), and, using the conclusion of Lemma [[6]
S(zo) ={z* € Z": 2" =a*|z, 2" € 9% f(x0)}.
Let 2 := x|z € S(w0) = 0%g(w0). Since u € Z, it follows that
(g, u) = (25, u) < g°(wo;u) = (o5 u).
This yields a contradiction to (33]), since

o) = s ()= swp (@)= swp (o).
z*€0% g(xo) z*€S(xo) z* €T (xo)

Hence we have shown that T = 9¢f on U. It follows from Definition that f
is subsmooth, and by Theorem B that it is unique (modulo a constant) in every
connected subset of U.

If moreover T is submonotone, then, using Theorem @ again, we infer that T'(x) C
OF f(z), for all z € U. Hence Gr( T) C Gr(0F f) C Gr(0f) and T = 9 f (on U),
whence T' = 0 f = 9°f on U. O

An inspection of the above proof yields the following result.

Proposition 17. Suppose that T is a locally bounded w*-cusco operator on an open
subset U of X. Then T is (mazimal) cyclically submonotone on U if, and only if,
T is radially cyclically submonotone and ds-submonotone on U.
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Proof. If T is cyclically submonotone, then from Proposition [[l and Remark 1,
it follows that T is radially cyclically submonotone and ds-submonotone on U.
Conversely, if T is radially cyclically submonotone and ds-submonotone on U, then
by Theorem Hl we infer that T C 0 f on U for some locally Lipschitz function f.
Since now T is locally bounded and w*-cusco on U, by Lemma [12 (i), for every
closed subspace Z of X, the operator S given in is 0(Z*, Z)-cusco on U N Z.
Thus, repeating the arguments of the above proof, we obtain that T = 9% f on U
and that f is subsmooth. It follows from Theorem A that T is (maximal) cyclically
submonotone on U. 0

6. EXAMPLES OF SUBSMOOTH FUNCTIONS

Apart from the classes of convex, continuous, or C! functions (or of sums of
such functions), typical examples of subsmooth functions include certain types of
marginal functions, as for instance the class of lower C! functions introduced in
[24] (and also considered in [2I] and [I6]). Let us note that subdifferentiability
properties of marginal functions have been studied by many authors; see for instance
3], [7], [8] and [11].

In the sequel let A be an arbitrary nonempty set and U an open subset of X.
We consider the marginal function f : U — R defined for every = € U by

(34) f(z) = sup g(z, ),
acA

where g : U x A — R is such that g(-, ) is a regular locally Lipschitz function and
f(x) < 400 for every x € U. Let us also make the following assumptions.

(i) For every xo € U, there exists 6 > 0 such that the set

U{@Cg(x,a) Qe A,{E € Bg(l‘o),g(x,&) > f(xo) - 6}

is norm bounded.
(ii) For every z € X and e € Sx there is an € > 0 such that for every v > 0
there exists ¢ > 0 such that

f/(yaa;e) - f’(x,a;e) <7

whenever || z —y ||< d and g(z, ) > f(z) —e.
(iii) For every zp € U, e € Sx and & > 0, there exists § > 0 such that

(35) o/ (r.aie) - LD Z9(r.0)

for all x € Bs(xo), all t € ]0, 6] and all a € A with g(x,a) > f(zo) — 9.

The following result is an easy consequence of results established in [T1].

<e€

Theorem 18. If f is a marginal function (relation (34)) satisfying conditions (i)-
(iii), then f is subsmooth on U and 07 f = 0C f is mazimal cyclically submonotone
on U.

Proof. By [11], Theorem 5.4 (a)], f is locally Lipschitz, and by [I1, Lemma 5.3]
and [LT, Theorem 5.2 (d)], f is regular; therefore 9 f = 9¢ f. Now again by [IT]
Theorem 5.4 (a)], ¢ f is ds-submonotone in U, i.e., f is subsmooth. Theorem A
finishes the proof. O



INTEGRATION OF MULTIVALUED OPERATORS AND SUBMONOTONICITY 193

Remarks. 1. It is easily seen that the above class of functions contains the class of
lower C! functions. Combining this with Theorem I8 and Spingarn’s characteriza-
tion of lower C! functions ([24] Theorem 3.9]), we conclude that in finite dimensions
a function f is lower C! if, and only if, f is given by (B84) and satisfies conditions
(1)-(iii).

2. If, in addition to the assumptions of Theorem [I8 the choice of § in (35)
does not depend on e, then by [L1, Theorem 5.4 (b)] we conclude that 9 f is
s-submonotone, and by Theorem C, that 9 f = 9 f.

Now let A be an arbitrary nonempty subset of the Banach space X. Let us
define the distance function by

d := inf — € X).
a@)=inf —all  (weX)
The following proposition provides another typical example of subsmooth functions.

Proposition 19. Suppose that the norm of X is uniformly Gdteaux (resp. uni-
formly Fréchet) differentiable. For any nonempty closed set A of X, let us consider
the function

f(z) = —da().
(i) Then f is subsmooth, hence regular, on X \ A.

(ii) 0 f = OH f (resp. 0°f = OFf) is mazimal cyclically submonotone and
0%da(.) is minimal w*-cusco on X \ A.

Proof. The assertions follow from [T, Theorem 5.6 (a),(b)], Theorem A and Re-
mark 2. O

Let us now consider another important class of examples of subsmooth functions.
We shall say that a function f : U — R is amenable ([22| Definition 10.23]) if for
any xg € U, there exist an open neighborhood V of zy, a Banach space Y, a
continuously differentiable function F': V' — Y and a proper lower semicontinuous
convex function g : ¥ — R U {+o0} such that

(36) f(x) =g(F(x)) forallz e V
and
(37) R, (dom g — F(zo)) + F'(z0)(X) = Y.

For the sake of simplicity, and since in this paper we limit our study to locally
Lipschitz functions, we further consider the subclass A(U) of amenable functions f
such that in the decomposition (36) we have F (V) C int dom(g). Obviously, every
function in A(U) is locally Lipschitz and condition (3) is satisfied.

Proposition 20. If f € A(U), then 9 f is s-submonotone (hence, in particular,
f is subsmooth).

Proof. Let f be in A(U). With no loss of generality, we may assume that V = U,
so that f = go F with g and F' as in (B6). Since g is regular on F(U) (because it
is convex and continuous on int dom(g)), applying [6, Theorem 2.3.10] we conclude
that f is also regular, that is, 9¢f = 0¥ f. Now set T = 90°f = 0H f. We shall
show that T is s-submonotone.
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To this end, let g € U, z1,22 € U and z € O0f(x;), ¢ = 1,2. Then there
exist y € dg(F(x;)) (i = 1,2) such that zF = yf o F'(x;), where F’(x) denotes the
Fréchet derivative of F' at x. It follows that

(38) (2] — a5, 21 — wa) = (Y, F'(w1) (21 — 22)) — (y3, F'(w2) (21 — 72)).

Since F is continuously differentiable, there exist § > 0 and a functionr : UxU — Y
such that

(39) F(v) — F(u) = F'(u)(v — u) + 7(u,v)
for all u,v € Bs(zo), and

(40) T G0

wozao lu—vf
uFv
Combining (B8) with ([B9), thanks to the monotonicity of dg we obtain

(2] — 23, w1 — 22) = (Y1, r(21, 22)) + (Y3, (22, 21)),
which yields, when x1 # zo,

<{ET — x;a Ty — {E2>

. 7’(961,$2)> <* 7“($2,$1)

> .
= Wl T )

21 — 22

The result now follows from (#0) and the local boundedness of dg near F(xo). O

Remark. Since every strictly Gateaux differentiable function F': U — Y is locally
Lipschitz ([0, Proposition 2.2.1]), a slight modification of the above proof suffices
to establish that € f is ds-submonotone on U, whenever F is strictly Gateaux
differentiable and g is locally Lipschitz with g s-submonotone on an open set
containing F(U).
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Connectedness of the Efficient Set for
Three-Objective Quasiconcave
Maximization Problems’

A. DaniLipis,2 N. Hapnisavvas,® AND S. ScHAIBLE?

Abstract. For three-objective maximization problems involving con-
tinuous, semistrictly quasiconcave functions over a compact convex set,
it is shown that the set of efficient solutions is connected. With that, an
open problem stated by Choo, Schaible, and Chew in 1985 is solved.

Key Words. Multi-objective maximization, semistrictly quasiconcave
functions, efficient solution set, connectedness.

1. Introduction

Consider the multi-objective maximization problem

max F(x)=(/i(x), ..., fu(x)), (1)
where S< R* is nonempty, compact, and convex and the functions f;: S—R
are continuous. It is well known that the set of efficient (Pareto optimal)
solutions E is connected if all the functions f; are concave (Ref. 1). This
topological property of E is algorithmically important.

Several authors have tried to relax the concavity assumption without
giving up connectedness of the efficient set, usually working with particular
kinds of quasiconcave functions (e.g., Refs. 2-7).

If n=1, then E coincides with the set of optimal solutions of (1) which
is convex, hence connected, as long as f; is quasiconcave. However for n=
2, quasiconcavity of f; and f, does not guarantee connectedness of E in
general (Ref. 3). It turns out that semistrict quasiconcavity [previously called
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strict quasiconcavity (Ref. 8)] is sufficient to ensure connectedness of E
(Ref. 3).

The case n=13 is treated in Ref. 4. With proof techniques different from
those in Ref. 3, it is shown that the closure of the efficient frontier F(E) is
connected if f1, />, f3 are semistrictly quasiconcave. However, connectedness
of E could not be established under these assumptions, nor a counterexample
be given in Ref, 4. It has remained an open problem in the literature until
now (Ref. 7). Only partial answers for particular kinds of generalized con-
cave functions could be proved, using various approaches (e.g., Ref. 2, Refs.
5-7, and the references therein). These preliminary results seem to point
toward a positive answer to the conjecture that E is connected if f1, ..., f,
are semistrictly quasiconcave for any number of functions.

In this paper, we will show that the conjecture is true for n=3; i.e., E
is connected if f}, f>, f3 are semistrictly quasiconcave. Though the approach
differs from the one in Ref. 4, the paper borrows heavily from the work in
Ref. 4 in addition to that in Ref. 3.

2. Notation and Relevant Resuits

Let x=(x, X2, ..., %) and y=(»1, 2, ..., ¥ ) be two vectors in R¥,
We denote by [x, y] the line segment {zx+ (1 —1)y: te[0, 1]}, and we define
the open line segment (x, y) analogously. We write

x<y, if x,;<y;, foralli=1,2,...,k.
We also write
xgy, ifx<yandx#y.

Let S = R* be convex. A function f: §— R is called semistrictly quasicon-
cave, if x, yeS and f(x) <f(y) imply f(x) <f(z) for all ze(x, y). An upper
semicontinuous, semistrictly quasiconcave function is quasiconcave (Ref. 8).

Given a vector-valued function F=(f,, /., ..., f,) on S, a point €S
is called efficient with respect to F, if xeS and F(X) < F(x) imply F(x)=
F(x). The set of all efficient points is denoted by E. Its image F(E) is called
the efficient frontier. The connectedness of E is related to the connectedness
of F(E) through the following theorem (Ref. 4, Theorem 6).

Theorem 2.1. If S is compact and convex and f,, f2, ..., f, are con-
tinuous and quasiconcave, then E is connected if and only if F(E) is
connected.
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Throughout the paper, we shall assume that S is nonempty, compact,
and convex and f; are continuous and semistrictly quasiconcave, In the
special case n=2, the efficient frontier is the graph of a continuous, strictly
decreasing function. To see this, we define

fi=max{fi(x): xeS}, i=1,2,
fi=max{fi(x): fo(x) =12},
fr=max{f1(x): i(x)=F}.

The following lemma is a combination of Lemmas 1 and 2 in Ref. 3.

Lemma 2.1. Letn=2.1If xeE, then f; < fi(x) < f;,i=1, 2. Conversely,
if for i=1 or i=2 we have f;<t< f;, then there exists xe E such that f;(x) =
t

We now have the following theorem.

Theorem 2.2. Let n=2. Then, there exists a continuous, strictly
decreasing function g from {f, fi] onto [f3, /5] such that

F(E)={(t.g(): telfi, fil}. (2)

Proof. By the previous lemma, for any (4, %)eF(E), we have
nelfi, fil. Conversely, for any t,€(f1, /1], we may find e[ f3, f] such that
(11, )eF(E). This t, is uniquely determined by #; indeed, if we had
(t1, L)EF(E), with say 1, <1, then we would have (¢, £2) ;(tl , 2), which
contradicts (¢, 2)eF(E), Setting t,=g(#;), we see that (2) holds. Using
again the above argument, we infer that g is strictly decreasing. Applying
again Lemma 2.1, this time to the second coordinate, we infer that g is a
map onto [/, /3]. Hence, g is continuous. d

Theorem 2.2 shows that, in the case n=2, F(F) is pathwise connected
and closed. Since E is the inverse image of F(E), E is also closed, and by
Theorem 2.1 it is also connected; see also Ref. 3, Theorems 2 and 3.

In what follows, we shall restrict ourselves to the case n=3. Besides the
set E of the efficient points of § with respect to the vector-valued function
F=(f\, f», f3), we also define the vector-valued functions F' by

F'=(fp, ), F=(f.f), F=(fi,1),

and the corresponding sets of efficient points E".
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Furthermore, for any te R, we define the sets
Si={xeS: fi(x)=1}, i=1,2,3.

Since f; are continuous and semistrictly quasiconcave, S| are closed and
convex. We denote by E! the set of the efficient points of §} with respect to
F'. Obviously, E' and E; are closed and connected subsets of S.

The proof of the following theorem is contained in the proof of Lemma
3 in Ref. 4. We refer the reader to Ref. 4 for the definition of lower semi-
continuity of multifunctions.

Theorem 2.3. The multifunctions t—F(E), i=1,2,3, are lower
semicontinuous.

Finally, we need the following lemma.
Lemma 2.2. Suppose that xeE} and x¢ E'. Then, xeE and f;(x)=¢.

Proof. The fact that xeF is the content of Theorem 7 in Ref. 4. To
prove that f;(x) =t, we may suppose that i= 1. Since xe E, , we have f;(x) > 1.
Let us suppose that fi(x)>t. Since x¢E', there exists yeS such that
F'(x) 2 F'(y). By semistrict quasiconcavity (and quasiconcavity) of f; and
/3, we have

F'(x)2F'(z), foranyze(x,y).

Since fi(x) > ¢, taking ze(x, y) close enough to x, we would have fi(z) >,
i.e., zeS!, which contradicts the fact that xe E|. O

3. Main Result

Thesets E', i=1, 2, 3, are closed subsets of S, hence compact. We define
ti=max{fi(x): xeE'}. 3)

The outline of the proof is as follows. We first show that the sets
F(EnS}), i=1,2,3, are connected. Then we prove that any two of them
have a nonempty intersection, hence their union is connected. Finally, we
show that any other point in F(E) can be joined to a point in these sets by
a continuous curve lying inside F(E).

We begin with a useful lemma.

Lemma 3.1. Foralli=1,2, 3, we have EnS' =, E..
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Proof. We may suppose that i=1, Let xeEn S},. Then, fi(x)>1,.
Obviously, since xeE, x is an efficient point of S}, with respect to F'.
Hence,

xe | E|.

t=h
Conversely, let

xelJ E!, ie.,xeE!, forsomer>1.
(=1

If x¢E', then xeE, as follows directly from Lemma 2.2. If on the other
hand xeE', then for any yeS with F(x)<F(y), we have in particular
F'(x)<F'(y), hence F'(x)=F'(y). It follows that yeE', hence
S1(¥) €4 < fi(x), which shows that F(x)=F(y), i.e., xeE. (|

The next lemma is an easy application of previous results.
Lemma 3.2. For all i=1, 2, 3, the set F(En S}) is connected.

Proof. By the previous lemma, we have

F(En si,)=F(U E)
21
Since the sets E| are connected, so are their images F(E}) under the continu-
ous function F. By Theorem 2.3, the multifunctions t—F(E) are lower
semicontinuous, so applying Corollary 2.1 of Ref. 4, we conclude that the
set

U F(E';)=F<U E';>=F(En S
1>1, >4
is connected for all i=1, 2, 3. O
We proceed by showing the following lemma.
Lemma 3.3. For i#j, we have ENn S| nS|#.
Proof. We may suppose that i=1 and j=2. By the definition of #,
there exists xe E' such that f;(x) =¢,. Obviously, xe En S,,. Likewise, there
exists yeE? such that fo(y)=t, and yeEnS;. If xeS2, then

EnS| nSL#@. Otherwise, fo(x)<t,=fo(y). Since xeE' we have
£5(x) > f3(p). This, together with the fact that ye E?, implies that f,(x) <fi(»).
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Since f)(x)=1,, we conclude that yeS },, and so again

EnS,nSL#J. a
We finally state our last crucial lemma.

Lemma 3.4. Let xeE be such that f;(x)<¢,i=1,2,3. Then, there
exists a point ye E n S}, and a continuous curve with values in F(E), joining
F(x) and F(y).

Proof. Let F(x)=(qa, b, ¢). We set further
fi=max{fi(x): xeS}},
fo=max{fa(x'): x'eS}},
fi=max{fi(x): x'eS}, and fo(x)=f2}.
3

By Lemma 3.3, we have S;, n S} # . For any x'€S7, N S}, we obviously
get 1 <fi(x') <fi. Since a=fi(x) <t,, we deduce that a<f,. Similarly, from
the fact that S;, N S5 # ¢J, we deduce that b<f;.

Let ze S}, be such that f3(z) =/ and fi(z) =f . We then have fo(x) </f(2)
and f3(x) <t;<f3(z). Since xe E, we get fi(x) >fi(z) =fi. Hence,

L’,<a<f',.

Applying now Lemma 2.1 to the set S;, and the function F 3, we infer
that there exists yeE;,, such that fi(y)=a. So, we have fi(»)=£i(x) and
S(y)=t3>fi(x); recalling that xeFE, we get fo(y) <fo(x). Consequently,
F*(y)2F*(x), so y¢ E>. Then Lemma 2.2 implies that ye E and f3(y) =ts.

We now show that F(x) and F(y) can be joined by a continuous curve
lying in F(E). We note that x, yeEn S}, hence in particular x, yeE}.
Applying Theorem 2.2 to the set S, and the vector-valued function F', we
infer that F'(x), F'() belong to the graph of a continuous strictly decreasing
function. Since f>( ¥) <f>(x), this means that there exists a continuous strictly
decreasing function g, defined on [#, 5], where b =f,(»), such that
(¢, g(1))eF'(E)), for every te[b, b], with F'(y)=(b, g(b")) and F'(x)=
(b, g(b)). For each &' <t<b, let x,cE. be such that F'(x,)=(t, g(t)). Then,

f(x)=t<b=fo(x)< f=1i(2).
Similarly, we have
Salx) =g(1) <g(0)=f3(y) = t:< f3(2).

Hence, F'(x,)<F'(2), i.e., x,¢ E'. Invoking now Lemma 2.2, we get x,€E
and fi(x,)=a. Consequently, the curve [V, b]2t->F(x)=(a,t, g(1) is
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continuous, lies in F(E), and joins F(x) to an element of F(EN S};)), as
asserted. O

Theorem 3.1. The set E is connected.

Proof. By Lemmas 3.2 and 3.3, the set F(En (S}, U S, U S3,)) is con-
nected. Furthermore, by Lemma 3.4, for any xe E\ (S}, u S5 U S3},), there
exists a continuous curve, lying in F(E) and joining F(x) to a point in
F(En (S}, uS,uS;)). Hence, F(E) is connected. Finally, recalling
Theorem 2.1, we infer that E is connected. d

4, Conclusions

The paper solves an open problem in the literature of generalized con-
cave multi-objective maximization (Ref. 4). It is shown that in the three-
objective case, semistrict quasiconcavity of all three functions guarantees
the connectedness of the efficient set E. In Ref. 4, it could only be shown
that the closure of the efficient frontier F(E) is connected.

In the case of two functions, semistrict quasiconcavity guarantees con-
nectedness of E as well; it is conjectured that, for any number of functions,
semistrict quasiconcavity ensures connectedness of E. Unfortunately, some
of the lemmas in this paper are not easily extendable to more than three
functions. A new approach seems to be needed to deal with the general case.
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1 Introduction

In 1953, Arrow, Barankin and Blackwell stated an interesting density
result in multicriteria optimization (see [1]) concerning the approximation of
the Pareto efficient points of a compact convex subset of R™ by points that
are maximizers of some strictly positive functional on this set. This theorem
was extended to cover more general notions of efficiency that are defined via
an abstract cone, see [2], [19] and was subsequently generalized to an infinite
dimensional setting, involving either weakly or norm compact sets.

In this article we endeavour a survey on these density results of Arrow,
Barankin and Blackwell’s type. Our aim is to survey the state of the art and
to set in detail the relations among ostensibly different results. To this end,
we shall adopt a unified approach available nowadays and, in doing so, we
shall slightly improve some norm approximation results concerning weakly
compact subsets of a Banach space. Finally we shall show the equivalence of
a recent result of Gong [16] with a well-known earlier one of Petschke [32].
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2 Notation

Throughout this paper, X will always be a Banach space and X* its
(topological) dual. However for most of what follows this is not essential and
one can also consider a more general setting (for instance that of a locally
convex space). In the sequel, we shall focus our interest in the norm and the
weak topology of X, which will be denoted respectively by || - ||-topology and
w-topology.

If e > 0 and © € X, we denote by B.(z) the closed ball centered at
x with radious . For any z,y € X, we define by [z,y] the closed segment
{tx + (1 —t)y : 0 < t < 1}, while the segments (z,v), (z,y] and [z,y) are
defined analogously. For any subset A C X, we denote by int(A) the norm
interior of the set A, by cl(A) (resp. w — cl(A)) the norm (resp. the weak)
closure of A and by co(A) its convex hull. It is well known that for convex
subsets of X the norm and the weak topological closures coincide (see [7]
e.g.).

Let now K be a nonempty subset of X. A point xy € K is said to belong
to the algebraic interior algint(K) of the set K, if for every y € X, the
intersection of the set K with the line joining xg and y, contains an open
interval around the point zq. It is easily seen that int(K) C algint(K).
Moreover if xg € algint(K), then one has (Jyo o MK — {zo}) = X. If K is
closed and convex, then using Baire’s theorem one can deduce from the latter
relation that intK # () and int(K) = algint(K).

We further recall the definition of a quasi-relative interior point, see [5,
Def. 2.3], or inner point, according to the terminology used in [18].

Definition 1. Let K be a nonempty closed convex subset of X and let zo €
K. The point zg is called a quasi-relative interior (or inner) point of the set
K, if the set cl(lJy-o AKX —{z0})) is a subspace of X.

We shall keep the simple term ‘inner point’ in order to refer to this notion.
We further denote by innK the set of all inner points of K. The following
proposition (see [5, Prop. 2.16]) reveals an interesting and characteristic prop-
erty of these points. This property was actually used as the definition of inner
points in [18].

Proposition 1. Let K be a nonempty closed convex subset of X. Then zy €
mnK if and only if x¢ is a nonsupport point of K, in the sense that the
following implication is true for every z* € X*:

(", —mp) <0,V € K = (z",x —20) =0,V € K (1)

It is easy to see that int K C algintK C innK. If K is closed and convex,
each of the previous inequalities becomes equality whenever the smaller set
is nonempty. We further recall from [18, Prop. 2.1] the following proposition:
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Proposition 2. If K is a (nonempty, closed, convex and) separable subset
of X, then innK # (.

Recently, inner points met important applications in variational inequality
problems, see [18], [9] and [23]. In the following paragraph we shall see that
this concept fits naturally also in the cone duality.

3 Order relations in Banach spaces

A nonempty subset C' of a Banach space X is called a cone, if for every
x € C the whole semiline {Az : A > 0} is contained in C. A cone C is called
pointed, if it does not contain whole lines, or equivalently if 0 is an extreme
point of C. We recall here that a point zq is said to be an eztreme point for
the set A, if 2y € A and z( is not contained in any open segment (z,y) lying
in A. In the sequel we shall assume that the cone C' is always closed, convex
and pointed.

It is well known (see for instance [31] or [22]) that the cone C' induces a
partial order relation < on X by means of the following formula:

r3ysy—zel (2)

Setting = 0 in the above formula (2) we see that the cone C' itself corre-
sponds to the set of nonnegative elements.

Let further A be a nonempty subset of X. The set A inherits naturally
from X the aforementioned order relation <. Consequently one can consider
the set Maz(A,C) of mazimal (or efficient) points of A (with respect to the
cone C) as follows:

Mazx(A,C)={xzo € A: {xo} = AN (zg+ C)} (3)
The dual cone C* of C is defined by

Cr={feX": f(x) >0,Vz € C} (4)

The dual cone C* corresponds to the set of all positive functionals. It is easily
seen that C* is always a nonempty closed convex cone of X*.
We further denote by

Ct={feY*: f(x)>0,VocCx#0} (5)

the set of all strictly positive functionals. This set is also a cone; however in
some cases it may be empty (see the example that follows Proposition 3). In
fact one can show (see [5] e.g.) that C¥ actually coincides with the set of inner
points innC™* of the closed convex set C*, so its nonemptiness is assured if
the space X* is separable (see Proposition 2 above). The importance of the
strictly positive functionals stems from the fact that they are closely related
to the notion of a cone base. The definition of the latter is recalled below:
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Definition 2. A closed convex subset V' of C is said to be a (cone) base, if
for every x € C, x # 0, there exist unique A > 0, b € V' such that y = Ab.

The existence of a cone base for a given cone C' is in fact equivalent to the
nonemptiness of the set C¥ = innC*, see also [22]. Indeed, if C* # §), then for
any f € C¥ the set {x € C': f(z) = 1} defines a cone base on C. Conversely,
if the cone C has a base V, then separating V' from 0 (by the Hahn-Banach
theorem), one immediately obtains a functional f € C*.

It follows directly from Proposition 2 that if X is a separable Asplund
space (i.e. X* is separable), then every cone has a base. This result can be
refined even further, as shows the following proposition in [5, Th. 2.19].

Proposition 3. Assume that X is a separable Banach space. Then every
(closed, convex pointed) cone C on X has a base.

The separability assumption is indispensable in the statement of Propo-
sition 3. Indeed, without this assumption nice cones may not have a base, as
shows the following example taken from [18].

Example:

Let I be any uncountable set and Y = ¢2(I) be the Hilbert space of all
square integrable (with respect to the counting measure) functions f : I — R.
Consider the cone C' of all non-negative real valued functions of Y. One easily
sees that C* = C. However this cone has no inner points, hence C' has no
base.

We further consider the interior intC* of the cone C*, which is a (possibly
empty) convex cone. One obviously has intC* C innC* = C*, the equality
holding whenever intC* # (. In particular, the latter is equivalent with the
existence of a bounded base for the cone C| as states the following proposition,
see [22].

Proposition 4. Let C be a closed, convez, pointed cone of Y. The following
are equivalent:

(i) The dual cone C* has a non-empty interior intC*.

(ii) The cone C has a bounded base V.

However it is possible to have intC* = () and innC* # (. In fact this
is very often the case. To enlighten further the above situation we present
below some standard examples of Banach spaces possessing a natural ordering
structure.

Examples:

1. Let X = R* = X*, and C = C* = R}. In this case the cone has a
bounded base, defined for instance by the strictly positive linear form y =
(1,1,..,1) € R™
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2. Let X = (}(N) be the space of all absolutely summable sequences
and C = €1+ (N) be the corresponding cone of all nonnegative sequences of
(1(N). One can easily see that the dual cone C* (which is the set £>°(N)
of all nonnegative bounded sequences of the dual space X = ¢°°(N)) has
a nonempty interior, which coincides with the set of all positive bounded
sequences. We conclude from Proposition 4 that C has a bounded base.

3. Let X = (P(N), X* = (9(N) where %—l—% =land 1< p,q < +o0.
Consider the cone C' = ¢P(N ). It follows from Proposition 2 (or Proposition
3) that the dual cone C* = ¢?(N); has inner points, hence C has a base.
However since C* has an empty interior, every base of C' is unbounded.

4. Let X be the space ¢o(NN) of all null sequences and let C = co(N)4+
be the cone of all nonnegative null sequences. Then X* = ¢}(N) and C* =
(1(N),. As in the previous case we conclude that the cone co(N); has a
base, but not a bounded base.

5. Let X be the space C([0,1]) of the real continuous functions equipped
with the topology of the uniform convergence. Since X is separable, applying
Proposition 3 we conclude that the cone C([0,1])+ of the nonnegative valued
functions has a base. However in this case X* coincides with the set BV ([0, 1])
of all regural Borel (signed) measures on [0, 1] and C* with the set BV ([0, 1])+
of all regural Borel positive measures. Since the latter set has an empty
interior, we conclude that the cone C([0,1])+ has no bounded base.

From the previous examples it becomes clear that the existence of a cone
base is a natural assumption in vector optimization, which is always fulfilled if
X is separable. On the other hand this is not the case for the assumption of the
boundedness of the base: Among the classical Banach spaces, this condition
is fulfilled only in £}(N) (or in general in L' (1)) and in the finite dimensional
spaces. We summarize below our main conclusions from the above discussion:

Proposition 5. Let C be a closed, convex, pointed cone of X. Then
(i) C has a base iff innC* # ()
(ii) C has a bounded base iff intC* # ()
(111) If X is separable, then innC* # ()

4 DPositive (or proper efficient) points.
Arrow-Barankin-Blackwell Theorem.

In the sequel we shall deal with a closed, convex pointed cone C' with a
base V in a Banach space X. In this case one has C¥ = innC* # (), hence
for any subset A C X one can define the set of positive points Pos(A, C) of
A as follows:
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Pos(A,C) ={xg € A:3f € innC”, f(xo) = sup f(A)} (6)

where sup f(A) denotes the supremum of the functional f on the set A.
We mention here that also other (more restrictive) notions of efficiency have
been defined in the literature, as for instance the notion of “superefficiency”
introduced in [6], see also [17] for a survey.

It is straightforward from relations (3), (6) and the definition of C* (re-
lation (5)) that Pos(A,C) C Max(A,C). However simple examples even in
two-dimensionsal spaces certify that in general this inclusion is strict.

In the special case X = R"™ and C' = R’} relations (3) and (6) have a
certain interpretation in Economics in terms of the Pareto efficient commod-
ity bundles and the supporting system of prices. This has motivated Arrow,
Barankin and Blackwell in 1953 to show the following density result [1] (see
also [30] for an alternative approach).

Theorem 1. Let A be a compact convex subset of R" and C = R'}. Then
Pos(A,C) is dense in Max(A,C).

In [19] and independently in [2] the preceding theorem has been extended
to cover the case of more general cones C' in R™. Theorem 1 was also gen-
eralized to an infinite dimensional setting. The particular case of {*°(N) has
a certain significance in Economics involving models with an infinite horizon
production, and has been studied in [33], [27], [29] and [12]. However the
statement of Theorem 1 itself as a density result had an independent inter-
est and generated pure mathematical extensions to arbitrary Banach spaces.
Many authors have worked in this direction, see for instance [34], [4], [21],
[10] etc.

In infinite dimensions there are two topologies that enter naturally into
consideration, the weak and the norm topology. The result that follows was
originally proved in [15]. Nowadays an easy and direct proof of it is available,
that uses the technique of ‘dilating cones’ (see [20]). This technique is now
classical and has already been repeated several times in density results of this
kind in [35], [16], [28] and [13]; see also [14] for a more general approach in
a locally convex setting. However we give here a sketch of this proof, since it
will help the presentation of the forthcoming density results.

In the following statement one can consider & to be either the norm or
the weak topology of X.

Theorem 2. Let X be a Banach space, X* its dual and S any topology of
the dual system (X, X*). Let A be a S-compact, convez subset of X and C a
closed, convex, pointed cone with a base V. Then
)

Max(A,C) C Pos(A,C (7)
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Proof. (Sketch) Let g € Max(A,C), i.e. {x0} = AN (xo+ C).
We first observe that C' = come(V'), where cone(V') denotes the closed cone
generating by V. Moreover, it is no loss of generality to assume that the
distance d(0,V) of the cone base V from 0, is greater than 1/2.

Step 1: For every n > 2, consider the (closed, convex, pointed, based)
cone C,, = cone(V + B1(0)). Then we obviously have C' =, ~, Cp.
Note that in general zo does not remain a maximal point of A for the larger
cone C,.

Step 2: For each n > 2, choose a maximal (with respect to C,,) point
x, € Maz(A,C,), such that z,, € A, := (xo + C,) N A. This is always
possible (see for instance [26, Cor. 3.6]), since the set A, is -compact. Since
the relation C' = (,,~, C, implies that {zo} = (),,>5 An, We easily conclude

that x,, — zg in the $-topology.

Step 3: Since {x,} = AN (z, + C,) and the cone C,, has a nonempty
interior, there exists a functional z* € C} that supports the set A at the
point x,. The proof now finishes by the observation that z* is actually a
strictly positive functional for the original cone C. a

A careful investigation of the previous proof leads easily to the forthcom-
ing corollary. We will first need the following definition.

Definition 3. We say that x¢ € A is a point of continuity of the set A, if
the identity mapping id : (A, w) — (4, |]|) is continuous at z.

The proof of the following corollary is straighforward. However this result
will be useful in the sequel. Let us recall from the proof of Theorem 2 that
for n > 2, C,, :==cone(V + B1(0)) and A, := (zo + Cy) N A.

Corollary 1. Let A be a w-compact, conver subset of X. Assume that xy €
Maz(A,C) and that for some ng > 2, xqg is a point of continuity of the set

Any. Then o € Pos(A,C)H.H.

Proof. Repeating the proof of Theorem 2 we produce a sequence (x,), C
Pos(A,C) that is weakly converging to zp. We note that this sequence is
eventually contained in A,,,, hence in view of Definition 3, it is actually norm
converging to xg. a

Theorem 2 expresses simultaneously two different density results, one for
the norm and one for the weak topology. However in the first case, the norm
compactness assumption imposed on the convex set A is very restrictive in
infinite dimensions. On the other hand the approximation result that we
obtain in the second case is rather weak. It is desirable to obtain a strong
approximation result involving weakly compact subsets of X, as for example
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does (in a local way) Corollary 1. To this end, Jahn [21] was the first to
derive a norm approximation result for weakly compact subsets, by assuming
that the cone C was of a ‘Bishop-Phelps type’. Subsequently Petschke [32]
(see also [15] for a different approach) refined Jahn’s proof to conclude the
same result, using - more general - any cone having a bounded base. We state
below Petsche’s result [32].

Theorem 3. Let A be a w-compact convex subset of X and assume that C
has a bounded base. Then

Max(A,C) C Pos(A, C)”'”

(8)

However, as we have already discussed in the previous section, the as-
sumption of a bounded based cone is unpleasant. Recently Gong [16] tried
to deal with this inconvenience by relaxing this assumption to an apparently
weaker one. Before we proceed to this result, we shall need the following
definition.

Definition 4. Let A be a closed convex subset of X and xy € A.

(i) wo is called a denting point of A, if for every € > 0, we have z¢ ¢ ¢o(A \
B.(x)), where ¢o(A \ B:(z¢)) denotes the closed convex hull of the set (A \
B.(x0)).

(ii) g is called a strongly exposed point of A by the functional * € X*, if for
every sequence (zp), C A, the relation z*(z,) — z*(zo) implies the norm
convergence of the sequence (zy,), to xg.

It follows easily from Definitions 3 and 4 that every denting point of A is a
point of continuity for this set. Moreover every strongly exposed point of A is
denting. It is worthmentioning that these last two notions coincide if A = C
and zg = 0, since in that case they are both equivalent to the boundedness
of the cone base. This is the content of the following proposition in [22] (see
also [16] for the equivalence of (ii) and (iii)).

Proposition 6. The following statements are equivalent:
(i) 0 is a strongly exposed point of the cone C.
(ii) 0 is a denting point of C.
(#ii) C has a bounded base

We are now ready to state Gong’s density result, see [16].

Theorem 4. Let A be a w-compact convex subset of X. Assume that one of
the following two conditions is fulfilled.

(i) Every mazimal point of A is denting.

(ii) 0 is a point of continuity of the cone C, i.e.

Ve>0, 0¢C\B(0,e) (9)

Then the following approximation result holds:

Max(A,C) C Pos(A,C) (10)
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Condition (i) of Theorem 4 is satisfied if for example A is taken to be the
unit ball of /7, for 1 < p < +00, see [16]. In the next section we shall see that
this condition can be remplaced by a weaker one that would only require that
every maximal point of A is a point of continuity. However even this latter
condition remains undesirable, since it imposes an a priori assumption on the
set of maximal points of A.

On the other hand, in view of Proposition 6 and of Definition 4(i) and its
subsequent comments, it follows that condition (9) holds trivially whenever
the cone C has a bounded base. In that sense the result of Theorem 4(ii)
appears to be more general than the one in Theorem 3. In [16], the author
queries (and states it as an open question) whether Theorem 4(ii) is indeed
a real extension of Theorem 3. In next section we shall answer this question
to the negative, by means of a characterization of the denting points of the
closed convex subsets of a Banach space.

5 Equivalence of Petscke’s and Gong’s theorems.

In this section we show that if 0 is a point of continuity of a pointed
cone C, then it is also a denting point of C'. Consequently, it will follow that
Theorems 3 and 4(ii) are equivalent.

Let K be a closed convex subset of X and g € K. As already partially
seen in the previous section, every denting point is both an extreme and a
point of continuity of K. In [24] (see also [25]) it has been proved that these
two properties actually characterize denting points, in case of a closed convex
and bounded subset K. The following proposition extends this result to the
class of all closed convex subsets of X.

Proposition 7. Let xg be a point of a closed convex subset K of a Banach
space. Then xq is denting if and only if To is an extreme point and a point
of continuity.

Proof. Let us assume that z( is both an extreme and a point of continuity of
the set K. Take any R > 0 and consider the set K = {x € K : |[x—x¢|| < R}.
Since Kr C K and x¢ € Kg, it follows easily that z remains an extreme
point and a point of continuity for the set K. Since the latter set is bounded,
it follows from [25] that xg is a denting point of it. The following claim finishes
the proof.

Claim: xg remains a denting point for the set K.

[Indeed, take any & > 0. With no loss of generality we can assume that R > .
Since z( is a denting point of the set Kr, we have 2y ¢ ¢o(Kgr \ B:(z0)),
hence there exist z* € X* and o € R such that z*(z) < o < z*(z'),
Vo' € ¢o(KR \ Be(x0)). Set W = {z € X : 2*(x) < o} and observe that
since W is a half-space and K is convex, we have WNK C B.(xo)N K. Note
now that W N K is a neighborhood of z( for the (relative) weak topology
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of K. It now follows that ¢o(K \ B.(xg)) € K \ W, hence in particular
xo ¢ ¢o(K \ B:(x9)). The claim is proved.]
O

Remark: It is interesting to observe that the previous result has the following
interesting restatement:

Ve > 0,2 ¢ @ (K\B(x,¢)) < Ve > 0,2 ¢ co(K\B(z,£)) and # ¢ K\B(z,¢)

i.e. the convex and the weak topological hull of the set (K\B(z,e)) can be
considered separately.

In the special case of a closed, convex pointed cone C, since the point
xo = 0 is extreme, we infer the following corollary.

Corollary 2. Let C' be a closed convex pointed cone of X. The following
statements are equivalent:

(i) 0 is a denting point of C

(ii) 0 is a point of continuity of C

The above corollary together with Proposition 6 shows in particular that
Petschke’s result (Theorem 3) and Gong’s result (Theorem 4(ii)) are equiv-
alent. Consequently, it remains widely open whether we can efficiently relax
(or omit) the assumption of a bounded cone in Theorem 3, without giving
up the norm approximation result theorem.

In the following theorem we survey the statements of Proposition 4, of
Proposition 6 and of the previous corollary in the following theorem, see also
[8]. The equivalence of (ii) and (iv) has also been observed in [16].

Theorem 5. Let C' be a closed convexr pointed cone of Y. The following
statements are equivalent:

(i) 0 is a strongly exposed point of C

(i) 0 is a denting point of C

(#i) 0 is a point of continuity of C

(iv) Ie >0, 0 ¢ co(C\B(0,¢))

(v) C has a bounded base

(vi) intC* # )

The following proposition is a local density result which extends in partic-
ular Theorem 4(i). The essence of this result comes actually from Corollary
1. We recall that a norm is said to have the Kadec-Klee property ([11] eg.),
if the relative norm and the relative weak topologies on the unit ball Bx
coincide at any point of the unit sphere Sx := {x € X : ||z| = 1}. We also
recall that every reflexive Banach space admits a Kadec-Klee renorming.
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Proposition 8. Let A be a w-compact convex subset of X and xg € Max(A,C).
Consider the following conditions:

(i) xo is a point of continuity of the set A.

(ii) 0 is a point of continuity of the cone C

(iii) There exists y € X, such that for some ng > 2, xg is the farthest point of

y for the set Ay, := (xo+Chpy)NA, (i.e. ly—xzoll > ly—z|, for allz € A,,),
with respect to an equivalent norm || - || of X having the Kadec-Klee property.
(iv) For some ng > 2, zq s a point of continuity of the set Ay, .

If any of the conditions (i)-(iv) holds, we have

xo € Pos(A,C’)H-H

Proof. In virtue of the Corollary 1, it suffices to show that each of the con-
ditions (i)-(iii) implies condition (iv).
Since A,, C A, it follows directly that condition (i) implies (iv).
Let us now assume that (ii) holds. Then from Theorem 5 it follows that C
has a bounded base V. Following the construction of the proof of Theorem
2, we observe that the cones C,, also have a bounded base, hence applying
again Theorem 5 we conclude that (iv) holds.
Let us finally assume that (iii) holds. Then z( is a boundary point of the
closed ball B, (y) centered at y with radius 7 = ||y — x¢||. Since the norm || - ||
has the Kadec-Klee property, it follows that z( is a point of continuity of the
set By(y). Since A, C B,(y) it follows that (iv) holds.

O

Remark: Since condition (ii) is equivalent to the existence of a bounded base
(see Theorem 5), the above proposition gives in particular an alternative (and
simpler) way to prove Theorem 3 of Petschke.
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Analyse convexe et quasi-convexe ; Applications en optimisation

Résumé : Ce document de syntheése s’articule autour de I’analyse convexe, de ’analyse quasi-convexe
et des applications en optimisation. Dans le premier domaine on aborde les théemes de la continuité,
de la différentiabilité et des criteres de coincidence pour les fonctions convexes, puis la convexification
des fonctions semi-continues inférieurement. Pour ’étude des fonctions quasi-convexes deux approches
sont adoptées: une approche analytique, via un sous-différentiel généralisé, et une approche géométrique,
basée sur les normales aux tranches. La derniéere partie est consacrée a des applications a l'intégration
d’opérateurs multivoques, aux inéquations variationnelles et & des problemes d’optimisation multi-criteres
en dimension finie et infinie. Parmi les nouveautés de ce travail, on trouve la notion de monotonie forte-
ment cyclique, qui caractérise le sous-différentiel d’une fonction convexe dont la restriction a son domaine
est continue, la quasi-monotonie cyclique, qui est une propriété intrinseque du sous-différentiel d’une
fonction quasi-convexe avec des applications importantes en économie mathématique, et la notion de
quasi-monotonie propre, qui caractérise les opérateurs pour lesquels I'inéquation variationnelle associée
a toujours des solutions sur toute sous-partie convexe et faiblement compacte de leur domaine. Notons
encore une nouvelle caractérisation de la propriété de Radon-Nikodym, et une extension a la dimension in-
finie d’un résultat de Janin concernant I'intégration d’un opérateur maximal cycliquement sous-monotone,
résultat qui généralise le théoreme classique de Rockafellar pour les opérateurs maximaux cycliquement
monotones.

Mots clés : Convexité, convexité généralisée, analyse non-lisse, sous-différentiel, intégration des opérateurs
multivoques, inéquation variationnelle, optimisation multi-critere, économie mathématique.

Convex and Quasiconvex Analysis ; Applications in Optimization

Abstract: This document is a research contribution on Convex Analysis, on Generalized Convexity and
on their applications in Optimization Theory. The first part deals with several fundamental questions
concerning continuity, differentiability and criteria of coincidence for the class of convex functions. Con-
vexification processes for lower semicontinuous functions are also studied. For the class of quasiconvex
functions two approaches are used: an analytic approach, in the spirit of non-smooth analysis, and a
geometric one, based on the notion of normal cones to sublevel sets. The second part is devoted to
applications to the integration of multivalued operators, to Variational Inequality Problems and to finite
and infinite dimensional multicriteria optimization problems. Among the concepts that are introduced
for the first time in this work are: the notion of strong cyclic monotonicity, which characterizes the
subdifferential of a convex function with a continuous restriction on its domain; the notion of cyclic
quasimonotonicity, an intrinsic property of the subdifferentials of quasiconvex functions with important
applications in Mathematical Economics; and the notion of proper quasimonotonicity, which character-
izes the class of operators for which the associated Minty Variational Inequality problem has at least
one solution on every nonempty convex and weakly compact subset of their domains. Let us finally
mention a new characterization of the Radon-Nikodym property, and an extension to infinite dimensions
of a result of Janin concerning the integration of the class of maximal cyclically submonotone operators,
which generalizes a classical result of Rockafellar for maximal cyclically monotone operators.

Key words: Convexity, generalized convexity, non-smooth analysis, subdifferential, integration of mul-
tivalued operators, variational inequalities, multicriteria optimization, mathematical economics.
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