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Abstract. We construct a weakly compact convex subset of ℓ2 with nonempty
interior that has an isolated maximal element, with respect to the lattice order ℓ2+.
Moreover, the maximal point cannot be supported by any strictly positive func-
tional, showing that the Arrow-Barankin-Blackwell theorem fails. This example
discloses the pertinence of the assumption that the cone has a bounded base for
the validity of the result in in�nite dimensions. Under this latter assumption, the
equivalence of the notions of strict maximality and maximality is established.

1. Introduction

Let X be a Banach space and P a closed convex cone with base B, that is, B is a
closed convex subset of P with the property that every nonzero element x ∈ P can
be represented in a unique way in the form x = λb, with λ > 0 and b ∈ B. Notice
that this is equivalent to the existence of a functional f ∈ X∗ that takes strictly
positive values on P \ {0}. In what follows we denote the set of strictly positive
functionals on P by

innP ∗ =
{
f ∈ X∗; f(u) > 0 ∀u ∈ P \ {0}

}
.

Nonemptiness of the set innP ∗ clearly implies (and in �nite dimensions is equivalent
to) the fact that P is a pointed cone, that is, P ∩ (−P ) = ∅. Moreover, nonempti-
ness of the interior of innP ∗ is equivalent to the existence of a bounded base for the
cone P .
The cone P de�nes a partial order on X as follows: x ⪰ y ⇐⇒ x − y ∈ P . In
case X = Rn and P = Rn

+, the famous Arrow-Barankin-Blackwell theorem (in short,
ABB theorem) asserts that every maximal element of a compact convex set can be
approximated by positive elements, that is, points that support the set by means of a
strictly positive functional, see [1,15]. The result has a pertinent economic interpre-
tation: every optimal allocation of commodities can be approximated by allocations
that are supported by a nontrivial system of prices ([1, 6]). Because of its impor-
tance, a lot of e�ort has been devoted to extensions of the ABB result in in�nite
dimensional spaces. The most general result can be announced in locally convex
topological vector spaces and ensures the density of the positive elements in the set
of maximal elements of every convex compact set (Theorem 2.1). Therefore, if X is
a Banach space equipped with a cone P and K is a compact (respectively, weakly
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compact) convex subset of X, then every maximal element of K can be strongly
(respectively, weakly) approximated by a sequence of positive elements. Moreover, if
the cone P has a bounded base, then the approximation is always strong, even if K is
merely weakly compact. The same conclusion obviously holds under the assumption
that the maximal element to be approximated is a point of continuity of the identity
map of K from the weak to the norm topology (Corollary 2.4). Notwithstanding,
until now, the degree of necessity of these assumptions was not made su�ciently
clear.
In this article we construct an example showing that strong approximation fails in
general even for the classical separable Hilbert space ℓ2 equipped with its lattice
cone ℓ2+ (Proposition 3.7). Our counterexample concerns a weakly compact convex
set with nonempty interior, framework in which the Hahn-Banach separation theo-
rem applies, outlining that the problem stems from the fact that the lattice cone ℓ2+
does not have a bounded base. Indeed, assuming that P has a bounded base would
guarantee that a strong approximation ABB result holds for any weakly compact set.
The current work shows that this assumption (or some variant of it) is essentially
necessary.
Let us quote some equivalent forms of the assumption that the cone has a bounded
base, that have already been employed in the literature, see e.g. [10, 14, 16]: the
cone P is of Bishop-Phelps type, the dual cone P ∗ has nonempty interior, there
exists a functional that strongly exposes 0 in P and �nally that 0 is a point of con-
tinuity of the identity map of the cone P from the weak to the norm topology. We
refer to [7] for a detailed discussion of the assumptions. We shall also show that
under any of these assumptions, we can reinforce the notion of maximality: every
maximal element is also strictly maximal, notion that relates to stability (see [5] and
references therin).

2. Notation and preliminaries

Throughout this paper E stands for a locally convex topological vector space,
while X denotes a Banach space with dual space X∗. The closed unit ball, the open
unit ball, and the unit sphere of X are denoted by BX , UX , and SX , respectively.
We also write δn ↘ 0+ to denote that δn > 0 and limn→∞ δn = 0.
We denote by

(1) Max(K,P ) =
{
x ∈ K : {x} = K ∩ (x+ P )

}
the set of P -maximal elements of a nonempty subset K of X, and by

(2) Pos(K,P ) =
{
x ∈ K : ∃f ∈ innP ∗, f(x) = sup f(K)

}
the set of its positive elements.

Let us mention that ifK is a (weakly) compact convex set,Max(K,P ) is nonempty,
as a consequence of Zorn lemma and a standard compactness argument. Nonempti-
ness of Pos(K,P ) is less obvious and will follow from forthcoming Theorem 2.1.
In 1953, Arrow-Barankin-Blackwell, in [1], established the density of the set Pos(K,P )



ABB THEOREMS: RESULTS AND LIMITATIONS IN INFINITE DIMENSIONS 3

in Max(K,P ), provided K is a compact convex subset of Rn and P = Rn
+. Since

then this density result became relevant in Economic Theory, see [6] for updated
references. General ABB results have also been obtained in arbitrary Banach spaces
(see, e.g., [14, 16]) and later on in locally convex topological vector spaces ([9, 10]).
The following theorem summarizes the previous results. The proof, which is es-
sentially already known, is based on the notion of dilating cones (see [4]). For the
convenience of the reader we provide a sketch of it.

Theorem 2.1 (Abstract density result). Let (E,ℑ) be a locally convex topological
vector space, K a ℑ-compact convex subset of E, and P a closed convex cone with
base B. Then

(3) Pos(K,P ) ⊆ Max(K,P ) ⊆ Pos(K,P )
ℑ

Proof. (Sketch) We provide a sketch of proof for the special case in which E = X
is a Banach space and ℑ is either the weak or the norm topology of X, which is
actually the case that is relevant in this work. The arguments can be easily adapted
to cover the more abstract setting.
Assume that K is ℑ-compact and convex, P = cone(B) and x̄ ∈ Max(K,P ), that
is, {x̄} = K ∩ (x̄+ P ). Then we consider the closed, convex cone

Pn = cone(B + δnBX), where δn ↘ 0+.

It follows that for n su�ciently large, Pn has a base and P =
⋂

n≥1 Pn.
For each n ≥ 1, choose a Pn-maximal point xn ∈ Max(K,Pn), such that

xn ∈ Kn := K
⋂

(x̄+ Pn).

Notice that P =
⋂

n≥1 Pn readily yields {x̄} =
⋂

n≥1Kn. Therefore, by the ℑ-
sequentially compactness of K (if ℑ is the weak topology use Eberlein-�mulian the-
orem), we easily obtain

ℑ- lim
n→∞

xn = x̄.

Since {xn} = K ∩ (xn + Pn) and int(Pn) ̸= ∅, there exists a functional x∗ ∈ P ∗
n that

supports the set K at the point xn. Since x∗ is actually a strictly positive functional
for the original cone P, the proof is complete. □

Remark 2.2. Let us mention that the authors in [12], working with a re�nement of
the notion of P -maximality (Henig proper maximality), were able to obtain a result
in the spirit of Theorem 2.1 under weaker assumptions: nonconvex sets K have been
considered and the assumption of F-compactness was replaced by F-asymptotic
compactness, see [12, Theorem 4.1].

In a Banach space X, Theorem 2.1 expresses simultaneously two di�erent density
results, for the norm and respectively, for the weak topology. However, assuming
norm compactness is very restrictive in in�nite dimensions, while on the other hand,
concluding only weak approximation is suboptimal. Therefore, it is desirable to
obtain a strong approximation result for weakly compact sets. However, this was
achieved only under additional assumptions. Jahn [14] was the �rst to derive a norm
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approximation result for weakly compact subsets, by assuming that the cone P was
of �Bishop-Phelps type�. Subsequently Petschke [16] (see also [10] for a di�erent
approach) re�ned Jahn's proof to conclude the same result for cones P having a
bounded base. More recent related references include [11�13].
We resume these results in a general scheme presented below. To this end, let us
recall the following de�nition.

De�nition 2.3 (Point of continuity). Let A be a nonempty subset of a Banach
space X. We say that x̄ ∈ A is a point of continuity for the set A and we denote
x̄ ∈ PC

(
A, (w, ∥ · ∥)

)
, if the identity mapping

Id : (A,w) → (A, ∥ · ∥)
is continuous at x̄.

It is well-known (see, e.g., [7]) that a closed convex pointed cone P has a bounded
base if and only if 0 ∈ PC

(
A, (w, ∥ · ∥)

)
. In view of the above, a careful investigation

of the proof of Theorem 2.1 leads readily to the following corollary (see also [3,
Theorem 3.1]).

Corollary 2.4 (Density result with combined topologies). Let K be a nonempty w-
compact convex subset of X, P a convex closed cone with base and let x ∈ Max(K,P ).

Then x ∈ Pos(K,P )
∥·∥

provided that one of the following conditions is satis�ed:

(i) 0 ∈ PC
(
P, (w, ∥ · ∥)

)
(equivalently, P has a bounded base);

(ii) x ∈ PC
(
K, (w, ∥ · ∥)

)
.

3. Main results

The main results are twofold. In the �rst subsection we consider the same framework
as in Corollary 2.4 (where the strong density result holds) and show that in this case,
every x̄ ∈ Max(K,P ) is also a strictly maximal element, see forthcoming de�nition
in (4). This latter is a more restrictive notion of maximality introduced to study
stability and well-posedness in vector optimization (see [2,5] and references therein).
In the second subsection we show that the ABB density result fails for general weakly
compact convex sets in a separable Hilbert space where the ordering cone P is the
natural lattice cone. The reason is the lack of bounded base for this cone.

3.1. Relation between Max(K,P ) and StMax(K,P ). Let us start with the de�-
nition of strict maximality ([2, 5]):

(4) StMax(K,P ) =
{
x ∈ K : ∀ε > 0, ∃δ > 0, (P + δBX) ∩ (K − x) ⊂ εBX

}
.

The above de�nition is illustrated by Figure 1. It is easy to see that every strictly
maximal point is maximal, but the converse is not true (see forthcoming Proposi-
tion 3.3 for example). However, under the assumption of Corollary 2.4, we will show
that Max(K,P ) and StMax(K,P ) coincide and they are both nonempty. To do
so, we need to recall the following result stated in a general locally convex space,
see [2, Theorem 2.2.1]
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0

ε

δ
P

P + δBX

K − x̄

Figure 1. De�nition of strict maximality: x̄ ∈ StMax(K,P )

Theorem 3.1 (Strict maximality in locally convex spaces). Let E be locally convex
topological vector space, K ⊂ E compact convex, and P a closed convex cone with
base. Suppose that x ∈ Max(K,P ). Then for each neighbourhood W of the origin
there exist a neighbourhood V of the origin such that

(P + V) ∩ (K − x) ⊂ W.

Notice that for the special case in which E = X is a Banach space considered
with its norm topology, we deduce from Theorem 3.1 that Max(K,P ) coincides with
StMax(K,P ), whenever K is (norm) compact. This is of course a very restrictive
assumption in in�nite dimensions. The following result remedies partially this in-
convenience.

Theorem 3.2. Let K be a w-compact convex subset of X, P a closed convex cone
with base, and x ∈ Max(K,P ). Then x ∈ StMax(K,P ) provided one of the following
conditions is satis�ed:

(i) 0 ∈ PC
(
P, (w, ∥ · ∥)

)
(equivalently, P has a bounded base);

(ii) x ∈ PC
(
K, (w, ∥ · ∥)

)
.

Proof. We may suppose without any loss of generality that x = 0. We �rst prove the
conclusion in the case in which (i) holds. Let ε > 0 and take a base B of P contained
in ε

3BX . By the Hahn-Banach theorem, there exists a functional f ∈ SX∗ such that

0 = f(0) ≤ sup f(K) < α ≤ inf f(B) (see Figure 2).
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x = 0

x+ P

B

1
3εBX

{f = α}

K

Figure 2. Proof of Theorem 3.2(i)

Let 0 < δ ≤ min{α, ε/3 } and let us show that (P + δBX) ∩ K ⊂ εBX . To do
this, let y = p+ δb ∈ K with p ∈ P and b ∈ BX and observe that

f(p) = f(y − δb) < α+ δ ≤ 2α.

It follows that f(p/2) ≤ α, therefore p
2 ∈ ε

3BX and consequently

∥y∥ ≤ ∥p∥+ δ ≤ ε.

The conclusion follows.
Let us now suppose that (ii) holds and let us consider ε > 0. Since

0 ∈ PC
(
K, (w, ∥ · ∥)

)
,

there exists a w-neighbourhood W of the origin such that

0 ∈ W ∩K ⊂ εBX .

By Theorem 3.1, there exists a w-neighbourhood (in particular, a norm neighbour-
hood) of the origin V such that

(P + V) ∩K ⊂ W ∩K ⊂ εBX ,

and the proof is complete. □

The following proposition shows that neither of the assumptions (i), (ii) in Theo-
rem 3.2 can be removed.
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Proposition 3.3. Let X = ℓ2. De�ne

P = {x = (xn) ∈ X; nx1 − |xn| ≥ 0, ∀n ≥ 2} and K = −P ∩BX .

Then
Max(K,P ) = Pos(K,P ) = {0} and StMax(K,P ) = ∅.

Proof. Since the cone is pointed, we have P ∩K ⊂ P ∩(−P ) = {0} and consequently
0 ∈ Max(K,P ). We claim that the origin is the unique element of the setMax(K,P ).
Indeed, if x ∈ K \ {0} then x ∈ −P and consequently 0 ∈ x+ P , proving the claim.
Moreover, it is easily seen that e1 ∈ innP ∗ and sup e1(K) = 0. Therefore we deduce
that 0 ∈ Pos(K,P ).
Let us now prove that 0 ̸∈ StMax(K,P ). To do this, let n ∈ N and de�ne the
sequence

zn = (znk )k ∈ ℓ2

by

znk =


− 1

2(n+1) , if k = 1

1
2 , if k = n+ 1

0 , if k /∈ {1, n+ 1}

.

Then it is easy to see that {zn}n ⊂ K. For every n ≥ 1, let us set

wn
1 = −zn1 =

1

2(n+ 1)
and wn

k = znk , for k ̸= 1.

Then {wn}n ⊂ P and d(zn, P ) ≤ ∥zn − wn∥ = 1
n+1 → 0 (as n → ∞) whereas

∥zn∥2 = 1

4(n+ 1)2
+

1

4
≥ 1

4
, for all n ≥ 1.

The claim follows. □

We shall now present an example showing that in Theorem 3.2, weak compactness
of the set K cannot be replaced by the weaker assumption that the set K is weakly
closed and bounded. It is a slight modi�cation of [5, Example 4.6].

Example 3.4. Let X = ℓ1 equipped with its lattice cone P = ℓ1+. It is worth
pointing out that P has both bounded and unbounded bases. Indeed, let us consider
a strictly positive functional f = (fn)n≥1 ∈ ℓ∞++ ≡ inn(ℓ1+)

∗. If there exists α > 0
such that fn ≥ α for every n ≥ 1, then f−1(1)∩P is a bounded base for ℓ1+, otherwise
f generates an unbounded base. In particular, taking a functional of the latter type:

f := (1/n)n≥1 ∈ inn(ℓ1+)
∗

the set f−1(1) ∩ P is an unbounded base for P . We �x this cone and consider the
closed convex bounded set

K = {x ∈ ℓ1 : −1 ≤ f(x) ≤ 0}
⋂

2BX .

It follows directly that 0 ∈ Pos(K,P ) and a fortiori 0 ∈ Max(K,P ).
On the other hand, taking xn := en − 1

ne1 ∈ 1
nBX + P , for all n ∈ N, where {en}n
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is the standard unit-vector basis of ℓ1, we deduce that {xn}n ⊂ K and ∥xn∥ ≥ 1 for
every n ∈ N. This shows that 0 /∈ StMax(K,P ).

The following proposition shows that if the cone P has a bounded base (as was the
case in the previous example), the set StMax(K,P ) is always nonempty. Therefore,
in Example 3.4, the set of strict maxima is nonempty (and strictly contained in
Max(K,P )). This being said, in forthcoming Proposition 3.6 we shall see that if P
does not have a bounded base, the set of strict maxima can be empty.
We recall that a functional f ∈ X∗ \ {0} is called a supporting functional of K at x0
if f(x0) = sup f(K).

Proposition 3.5 (existence of strict maxima for a bounded based cone). Let K be a
nonempty closed convex bounded subset of a Banach space X and P a convex closed
cone with a bounded base. Then StMax(K,P ) ̸= ∅.

Proof. Since P has a bounded base, then intP ∗ is nonempty. Hence, by Bishop-
Phelps theorem (see, e.g., [8, Theorem 7.41]), there exists x∗0 ∈ intP ∗ that is a
supporting functional for K at a point x0 ∈ K, i.e., x0 ∈ Pos(K,P ). By [5, Corol-
lary 5.4], we conclude that x0 ∈ StMax(K,P ). □

Let us further denote by c0 := {x = (xn)n ∈ RN : lim
n→∞

xn = 0} the Banach space

of all null sequences from N to R equipped with the norm ∥x∥∞ := sup
n≥1

|xn|. Let us

consider the linear operator T : c0 → ℓ2 de�ned for every x ∈ c0 as follows:

(5) x := (xn) 7→ T (x) :=
(xn
2n

)
n≥1

∈ ℓ2.

Notice that T is injective, continuous and

∥Tx∥2 =

√√√√∑
n≥1

|xn|2
4n

≤
(
1/
√
3
)
∥x∥∞ .

Therefore,

(6) |||x||| := ∥x∥∞ + ∥Tx∥2
is an equivalent norm on c0.

We are now ready to provide an example where the set StMax(K,P ) is empty, even
if Max(K,P ) is nonempty, showing the pertinence of the assumption that the cone
P has a bounded base in Proposition 3.5.

Proposition 3.6 (example where StMax(K,P ) is empty). Consider the Banach
space X = (c0, ||| · |||), where ||| · ||| is the equivalent norm de�ned in (6). Consider
further the closed convex bounded set K = BX and the lattice cone

P := (c0)+ = {x = (xn) ∈ c0 : xn ≥ 0, for all n ≥ 1}.
Then

StMax(K,P ) = ∅ and Max(K,P ) ̸= ∅.
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Proof. Let us denote by {en}n the canonical basis of c0 and set α := 1 + 1/
√
3. It

follows that
∥x∥∞ ≤ |||x||| ≤ α ∥x∥∞, for all x ∈ c0.

Set x̄ := 2
3e1 and notice that for all p ∈ P \ {0} we have |||x̄||| = 1 < |||x̄ + p|||. It

follows readily that x̄ = 2
3e1 ∈ Max(K,P ), therefore the set of maxima of K is not

empty.

It remains to show that StMax(K,P ) = ∅. It is su�cient to prove that no point in
the boundary SX of K can be in StMax(K,P ).

To this end, let x = (xn) ∈ SX (that is, |||x||| = 1). Since StMax(K,P ) ⊂ Max(K,P )
we can clearly also assume that x ∈ Max(K,P ). Therefore

|||x||| = 1 < |||x+ p|||, for all p ∈ P \ {0}.

Notice further that ∥x∥∞ ≥ 1/α. Therefore, since x ∈ c0, there exists n0 ∈ N such
that |xn| ≤ 1/2α, for all n ≥ n0. Setting

pn := (1/2α) en ∈ P

we have:

|||x||| = 1 < |||x+pn||| := ∥x+ 1
2αen∥∞ +

( ∑
k∈N\{n}

(x2k/4
k) + 1

4n

(
xn + 1

2α

)2)1/2

.

Notice that ∥x+ 1
2αen∥∞ = ∥x∥∞, for n ≥ n0 and that βn := |||x+ 1

2αen||| → 1. Set

zn =
1

βn
(x+ pn) ∈ BX ≡ K

and notice that d(zn, x+ P ) ≤ |||zn − (x+ pn)||| → 0 (since βn → 1).

On the other hand, by the triangular inequality we obtain

|||(x+ pn)− zn||| + |||zn − x||| ≥ |||pn||| > ∥pn∥∞ =
1

2α
.

Since |||(x+pn)− zn||| → 0, we deduce that zn−x /∈ (1/2α)UX , for all n su�ciently
large, whence x ̸∈ StMax(K,P ). □

3.2. Failure of approximation of Max(K,P ) by Pos(K,P ). In this subsection
we construct an example showing that the strong version of the ABB theorem fails
to hold. This outlines the pertinence of the assumptions of all known in�nite di-
mensional versions of the result, revealing in particular that the assumptions in
Corollary 2.4 cannot be removed.

Indeed, we construct a weakly compact convex set in ℓ2 with an isolated maximal
point which is not a point of continuity and cannot be supported by a strictly pos-
itive functional with respect to the natural ordering cone ℓ2+. It is worth pointing
out that the set K in this example will have nonempty interior. On the other hand,
the cone P does not (and cannot) have any bounded base.
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Proposition 3.7 (failure of ABB strong approximation). Let X = ℓ2, P = ℓ2+, and

K = {x = (xn) ∈ X; x1 + x2n ≤ 0, ∀n ≥ 2}.

Then

Max(K,P ) ∩ UX = {0} and StMax(K,P ) ∩ UX = Pos(K,P ) ∩ UX = ∅.

Proof. Let us notice that

K ∩ {x = (xn) ∈ X; x1 ≥ 0} = {0}.

Indeed, let x = (xn) ∈ K \{0}, then by de�nition we have x1 < 0 and consequently x
cannot be maximal for P = ℓ2+. On the other hand, we readily have 0 ∈ Max(K,P ).

We claim that 0 ̸∈ Pos(K,P ). Indeed, let y = (yn) ∈ innP ∗ = ℓ2++ be arbitrarily
chosen. Then taking α > 0 su�ciently small, the point x = (−α,

√
α, 0, . . .) belongs

to K and y(x) := −αy1+
√
αy2 > 0 = y(0), showing that y cannot support K at 0.

Let us now claim that 0 ̸∈ StMax(K,P ). To prove this, let n ∈ N and de�ne
zn = (znk )k ∈ ℓ2 by

znk =


− 1√

2
1
n , if k = 1

1√
2

1√
n
, if k ∈ {2, . . . , n+ 1}

0, if k > n+ 1

.

Then it is easy to see that {zn} ⊂ K. Setting wn
k = max{znk , 0} for all n, k ≥ 1, we

have {wn}n ⊂ P and d(zn, P ) ≤ ∥zn − wn∥ → 0 (as n → ∞), whereas

∥zn∥2 = 1

2n2
+ n

1

2n
≥ 1

2
, for n ≥ 1.

Therefore the claim follows.
Let us prove that Max(K,P ) ∩ UX = {0}. To do this, let x = (xn) ∈ K be such
that x1 < 0 and x ∈ UX . Then the set

Nx := {n ∈ N; n ≥ 2, x2n = |x1|}

is �nite (and possibly empty). Take n0 > 1 such that n0 ̸∈ Nx. Then for ε > 0
su�ciently small we have |x1| > (|xn0 |+ ε)2. It follows that

J := [x− εen0 , x+ εen0 ] ⊂ K,

and consequently x ̸∈ Max(K,P ), since necessarily x + P intersects J \ {x}. The
fact that

StMax(K,P ) ∩ UX = Pos(K,P ) ∩ UX = ∅
follows directly from the inclusion

StMax(K,P ) ∪ Pos(K,P ) ⊂ Max(K,P ).

The proof is complete. □
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Remark 3.8. It is well-known that the closed unit ball B of ℓ2 has the Kadets-Klee
property, which guarantees that every boundary point is a point of continuity from
the weak to the norm topology. The set K in Proposition 3.7 is a subset of B,
containing the basic vector e1 := (1, 0, . . . ) and constructed in a way that the part
around e1 is su�ciently �attered so that the Kadets-Klee property fails and at the
same time there is no other maximal element near e1.
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