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Abstract
We construct a weakly compact convex subset of �2 with nonempty interior that has an
isolated maximal element, with respect to the lattice order �2+. Moreover, the maximal
point cannot be supported by any strictly positive functional, which shows that the
Arrow-Barankin-Blackwell theorem fails. This example discloses the pertinence of
the assumption that the cone has a bounded base for the validity of the result in
infinite dimensions. Under this latter assumption, the equivalence of the notions of
strict maximality and maximality is established.
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1 Introduction

Let X be a Banach space and P be a closed convex cone with base B, that is, B is a
closed convex subset of P with the property that every nonzero element x ∈ P can be
represented in a unique way in the form x = λb, with λ > 0 and b ∈ B. Notice that
this is equivalent to the existence of a functional f ∈ X∗ that takes strictly positive
values on P \ {0}. In what follows, we denote the set of strictly positive functionals
on P by

innP∗ = {
f ∈ X∗ : f (u) > 0, ∀u ∈ P \ {0}}.

Nonemptiness of the set innP∗ clearly implies (and in finite dimensions is equivalent
to) the fact that P is a pointed cone, that is, P ∩ (−P) = {0}. Moreover, nonemptiness
of the interior of innP∗ is equivalent to the existence of a bounded base for the cone P .
The cone P defines a partial order on X as follows: x � y ⇐⇒ x − y ∈ P . In case
X = R

n and P = R
n+, the famous Arrow-Barankin-Blackwell theorem (in short,

ABB theorem) asserts that every maximal element of a compact convex set can be
approximated by positive elements, that is, points that support the set by means of a
strictly positive functional, see [1, 18]. The result has a pertinent economic interpre-
tation: every optimal allocation of commodities can be approximated by allocations
that are supported by a nontrivial system of prices ([1, 6]). Because of its importance,
a lot of effort has been devoted to extensions of the ABB result in infinite dimensional
spaces. The most general result can be announced in locally convex topological vector
spaces and ensures the density of the positive elements in the set of maximal elements
of every compact convex set (Theorem 1). Therefore, if X is a Banach space equipped
with a cone P and K is a compact (respectively, weakly compact) convex subset of X ,
then every maximal element of K can be strongly (respectively, weakly) approxi-
mated by a sequence of positive elements. Moreover, if the cone P has a bounded
base, then the approximation is always strong, even if K is merely weakly compact.
The same conclusion obviously holds under the assumption that the maximal element
to be approximated is a point of continuity of the identity map of K from the weak to
the norm topology (Corollary 1). However, until now, the degree of necessity of these
assumptions was not sufficiently clear.
In this article, we construct an example showing that strong approximation fails in
general even for the classical separable Hilbert space �2 equipped with its lattice
cone �2+ (Proposition 4). Our counterexample concerns a weakly compact convex set
with nonempty interior, framework in which the Hahn-Banach separation theorem
applies, outlining that the problem stems from the fact that the lattice cone �2+ does
not have a bounded base. Indeed, assuming that P has a bounded basewould guarantee
that a strong approximation ABB result holds for any weakly compact set. The current
work shows that this assumption (or some variant of it) is essentially necessary.
Let us quote some equivalent forms of the assumption that the cone has a bounded
base that have already been used in the literature, see, e.g. [13, 17, 19]: the cone P
is of Bishop-Phelps type, the dual cone P∗ has nonempty interior, there exists a
functional that strongly exposes 0 in P and finally that 0 is a point of continuity of the
identity map of the cone P from the weak to the norm topology. We refer to [7] for
a detailed discussion of the assumptions. We shall also show that under any of these
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assumptions, we can reinforce the notion of maximality: every maximal element is
also strictly maximal, notion that relates to stability (see [5] and references therin).

2 Notation and Preliminaries

Throughout this paper E stands for a locally convex topological vector space, while
X denotes a Banach space with dual space X∗. If 	 denotes the topology of E , we say
that K ⊂ E is 	-compact if K is compact with respect to the topology 	. A similar
notation is used for 	-convergence, 	-closure, 	-neighborhood, etc.

The closed unit ball, the open unit ball, and the unit sphere of X are denoted by
BX , UX , and SX , respectively. We also write δn ↘ 0 to denote that δn > δn+1 > 0
(n ∈ N) and limn→∞ δn = 0. Given x ∈ K ⊂ X , we say that f ∈ X∗ \ {0} supports
K at x if f (x) = sup f (K ). Finally, let us recall that if K ⊂ X is a nonempty set,
then the conical hull of K is the set

cone(K ) = {x ∈ X : x = λk, k ∈ K , λ > 0}.

We denote by

Max(K , P) = {
x ∈ K : {x} = K ∩ (x + P)

}
(1)

the set of P-maximal elements of a nonempty subset K of X , and by

Pos(K , P) = {
x ∈ K : ∃ f ∈ inn P∗, f (x) = sup f (K )

}
(2)

the set of its positive elements. Hence, x ∈ Pos(K , P) if and only if there exists a
functional f ∈ innP∗ supporting K at x .

Let usmention that if K is a (weakly) compact convex set,Max(K , P) is nonempty,
as a consequence of the Zorn lemma and a standard compactness argument. Nonempti-
ness of Pos(K , P) is less obvious and will follow from the forthcoming Theorem 1.
In 1953, Arrow-Barankin-Blackwell, in [1], established the density of the set
Pos(K , P) inMax(K , P), provided K is a compact convex subset ofRn and P = R

n+.
Since then this density result became relevant in Economic Theory, see [6] for updated
references. General ABB results have also been obtained in arbitrary Banach spaces
(see, e.g. [17, 19]) and later on in locally convex topological vector spaces ([12, 13]).
The following theorem summarizes the previous results.

Theorem 1 (Abstract density result) Let (E,	) be a locally convex topological vec-
tor space, K a 	-compact convex subset of E, and P a closed convex cone with base
B. Then

Pos(K , P) ⊆ Max(K , P) ⊆ Pos(K , P)
	
. (3)

For the convenience of the reader we provide a detailed proof of the previous
theorem, based on the notion of dilating cones (see [4]), in the special case in which
E = X is a Banach space and 	 is either the weak or the norm topology on X , which
is actually the case relevant in this work. The same arguments can be easily adapted
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to locally convex topological vector spaces, and for a detailed proof of Theorem 1 in
this more general setting, we refer to [12, Theorem 3].

Proof Let us denote by	 the norm or theweak topology on a Banach space X . Assume
that K is a 	-compact convex subset of X , P = cone	(B) and x̄ ∈ Max(K , P), that
is, {x̄} = K ∩ (x̄ + P). By the Hahn-Banach theorem, there exists f ∈ SX∗ such that
α := inf f (B) > 0. Notice that if δ ∈ (0, α) then inf f (B + δBX ) = α − δ > 0.
It easily follows that the cone P̃ = cone	(B + δBX ) admits, for any positive θ , the
	-closed convex set {x ∈ P̃ : f (x) = θ} as a base. Let {δn} ⊂ (0, α) be such that
δn ↘ 0 and consider the closed convex cones

Pn = cone	(B + δn BX ), (n ∈ N).

By our choice of {δn}, Pn has a base whenever n ∈ N. Moreover, we claim that
P = ⋂

n≥1 Pn . To prove the claim, take z ∈ ⋂
n≥1 Pn and let prove that z ∈ P . Since

z ∈ ⋂
n≥1 Pn , there exist sequences {λn} ⊂ [0,∞), {bn} ⊂ BX , and {wn} ⊂ B such

that ‖z − λnwn − λnδnbn‖ → 0. If f ∈ SX∗ is defined as above, we have

f (z) = lim
n

λn
(
f (wn) + δn f (bn)

) ≥ lim sup
n

λn(α − δ),

and hence the sequence {λn} is necessarily bounded. Since ‖λnδnbn‖ → 0, we have

z ∈ P
	 = P , and our claim is proved.

For each n ≥ 1, by a plain application of Zorn’s Lemma, we can find a Pn-maximal
point xn ∈ Max(K , Pn), such that

xn ∈ Kn := K
⋂

(x̄ + Pn).

Notice that P = ⋂
n≥1 Pn readily yields {x̄} = ⋂

n≥1 Kn . Since {Kn} is a decreas-
ing sequence of 	-compact subsets of X such that {x̄} = ⋂

n≥1 Kn , for every
	-neighborhood V of x̄ we have that there exists n0 ∈ N such that Kn0 ⊂ V (see, e.g.,
[8, Fact 1.6]). Hence,

	- lim
n→∞xn = x̄ .

Since {xn} = K ∩ (xn + Pn) and Pn has nonempty interior in the norm topology, there
exists a functional x∗ ∈ P∗

n that supports the set K at the point xn . Since x∗ is actually
a strictly positive functional for the original cone P , the proof is complete. ��
Remark 1 Let us mention that in [15] the authors, working with a refinement of the
notion of P-maximality (Henig proper maximality), were able to obtain a result,
namely [15, Theorem 4.1], in the spirit of Theorem 1 but under weaker assumptions:
nonconvex sets K have been considered and the assumption of 	-compactness was
replaced by 	-asymptotic compactness (see [15, Definition 2.1] for the definition of
	-asymptotic compactness).

In a Banach space X , Theorem 1 simultaneously expresses two different density
results, for the norm and, respectively, for theweak topology. Notwithstanding, assum-
ing norm compactness is very restrictive in infinite dimensions, on the other hand,
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concluding that only weak approximation holds is suboptimal. Therefore, it is desir-
able to obtain a strong approximation result for weakly compact sets. However, this
was achieved only under additional assumptions. Jahn [17] was the first to derive a
norm approximation result for weakly compact subsets, assuming that the cone P
was of “Bishop-Phelps type”. Subsequently, Petschke [19] (see also [13] for a differ-
ent approach) refined Jahn’s proof to conclude the same result for cones P having a
bounded base. More recent related references include [14–16].
We resume these results in a general scheme presented below. To this end, let us recall
the following definition.

Definition 1 (Point of continuity) Let A be a nonempty subset of a Banach space
X . We say that x̄ ∈ A is a point of continuity for the set A and we denote x̄ ∈
PC

(
A, (w, ‖ · ‖)), if the identity mapping

Id : (A, w) → (A, ‖ · ‖)

is continuous at x̄ .

It is well-known (see, e.g. [7]) that a closed convex pointed cone P has a bounded
base if and only if 0 ∈ PC

(
P, (w, ‖ · ‖)). In view of the above, a careful investiga-

tion of the proof of Theorem 1 leads readily to the following corollary (see also [3,
Theorem 3.1]).

Corollary 1 (Density result with combined topologies) Let K be a nonempty w-
compact convex subset of X, P a convex closed conewith base and let x ∈ Max(K , P).

Then x ∈ Pos(K , P)
‖·‖

provided that one of the following conditions is satisfied:

(i) 0 ∈ PC
(
P, (w, ‖ · ‖)) (equivalently, P has a bounded base);

(ii) x ∈ PC
(
K , (w, ‖ · ‖)).

3 Main Results

The main results are twofold. In the first subsection, we consider the same framework
as in Corollary 1 (where the strong density result holds) and show that in this case,
every x̄ ∈ Max(K , P) is also a strictly maximal element, see forthcoming definition
in (4). The latter is a more restrictive notion of maximality introduced to study stability
and well-posedness in vector optimization (see [2, 5] and references therein).
In the second subsection, we show that the ABB density result fails for general weakly
compact convex sets in a separable Hilbert space where the ordering cone P is the
natural lattice cone. The reason is the lack of a bounded base for this cone.

3.1 Relation BetweenMax(K, P) and StMax(K, P)

Let us start with the definition of strict maximality ([2, 5]):

StMax(K , P) = {
x ∈ K : ∀ε > 0, ∃δ > 0, (P + δBX ) ∩ (K − x) ⊂ εBX

}
. (4)
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Fig. 1 Definition of strict maximality: x ∈ StMax(K , P)

The above definition is illustrated by Figure 1. It is easy to see that every strictly
maximal point is maximal, but the converse is not true (see forthcoming Proposi-
tion 1 for example). However, under the assumption of Corollary 1, we will show
that Max(K , P) and StMax(K , P) coincide and they are both nonempty. To do so,
we need to recall the following result stated in a general locally convex space, see [2,
Theorem 2.2.1]

Theorem 2 (Strict maximality in locally convex spaces) Let E be a locally convex
topological vector space, K ⊂ E compact convex, and P a closed convex cone with
base. Suppose that x ∈ Max(K , P). Then for each neighbourhood W of the origin
there exist a neighbourhood V of the origin such that

(P + V) ∩ (K − x) ⊂ W.

Notice that for the special case in which E = X is a Banach space considered
with its norm topology, we deduce from Theorem 2 that Max(K , P) coincides with
StMax(K , P), whenever K is (norm) compact. This is of course a very restrictive
assumption in infinite dimensions. The following result remedies partially this incon-
venience.

Theorem 3 Let K be a w-compact convex subset of X, P a closed convex cone with
base, and x ∈ Max(K , P). Then x ∈ StMax(K , P) provided one of the following
conditions is satisfied:

(i) 0 ∈ PC
(
P, (w, ‖ · ‖)) (equivalently, P has a bounded base);

(ii) x ∈ PC
(
K , (w, ‖ · ‖)).
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Fig. 2 Proof of Theorem 3(i)

Proof We may suppose without any loss of generality that x = 0. We first prove the
conclusion in the case in which (i) holds. Let ε > 0 and take a base B of P contained
in ε

3 BX . By the Hahn-Banach theorem, there exist a functional f ∈ SX∗ and a real
number α such that

0 = f (0) ≤ sup f (K ) < α ≤ inf f (B) (see Figure 2).

Let 0 < δ ≤ min{ α, ε/3 } and let us show that (P + δBX )∩ K ⊂ εBX . To do this,
let y = p + δb ∈ K with p ∈ P and b ∈ BX and observe that

f (p) = f (y − δb) < α + δ ≤ 2α.

It follows that f (p/2) ≤ α, therefore there exists a real number λ ∈ [0, 1] such that
p
2 ∈ λB. By recalling that B ⊂ ε

3 BX , we have that
p
2 ∈ ε

3 BX and consequently

‖y‖ ≤ ‖p‖ + δ ≤ ε.

The conclusion follows.
Let us now suppose that (ii) holds and let us consider ε > 0. Since

0 ∈ PC
(
K , (w, ‖ · ‖)),

there exists a w-neighbourhood W of the origin such that

0 ∈ W ∩ K ⊂ εBX .
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By Theorem 2, there exists a w-neighbourhood (in particular, a norm neighbourhood)
of the origin V such that

(P + V) ∩ K ⊂ W ∩ K ⊂ εBX ,

and the proof is complete. ��
The following proposition shows that neither of the assumptions (i), (ii) in Theorem 3
can be removed.

Proposition 1 Let X = �2. Define

P = {x = (xn) ∈ X : nx1 − |xn| ≥ 0, ∀n ≥ 2} and K = −P ∩ BX .

Then
Max(K , P) = Pos(K , P) = {0} and StMax(K , P) = ∅.

Proof Since the cone is pointed, we have P ∩K ⊂ P ∩ (−P) = {0} and consequently
0 ∈ Max(K , P). We claim that the origin is the unique element of the set Max(K , P).
Indeed, if x ∈ K \ {0} then x ∈ −P and consequently 0 ∈ x + P , proving the claim.
Moreover, it is easily seen that e1 ∈ inn P∗ and sup e1(K ) = 0. Therefore we deduce
that 0 ∈ Pos(K , P).
Let us now prove that 0 /∈ StMax(K , P). To do this, let n ∈ N and define the sequence

zn = (znk )k ∈ �2

by

znk =

⎧
⎪⎨

⎪⎩

− 1
2(n+1) , if k = 1,

1
2 , if k = n + 1,

0 , if k /∈ {1, n + 1}.
Then it is easy to see that {zn}n ⊂ K . For every n ≥ 1, let us set

wn
1 = −zn1 = 1

2(n + 1)
and wn

k = znk , for k �= 1.

Then {wn}n ⊂ P and d(zn, P) ≤ ‖zn − wn‖ = 1
n+1 → 0 (as n → ∞) whereas

‖zn‖2 = 1

4(n + 1)2
+ 1

4
≥ 1

4
, for all n ≥ 1.

The claim follows. ��
We shall now present an example showing that in Theorem 3, weak compactness of
the set K cannot be replaced by the weaker assumption that the set K is weakly closed
and bounded. It is a slight modification of [5, Example 4.6].

123



Journal of Optimization Theory and Applications           (2025) 207:38 Page 9 of 13    38 

Example 1 Let X = �1 equipped with its lattice cone P = �1+. It is worth pointing
out that P has both bounded and unbounded bases. Indeed, let us consider a strictly
positive functional f = ( fn)n≥1 ∈ �∞++ ≡ inn(�1+)∗. If there exists α > 0 such that
fn ≥ α for every n ≥ 1, then f −1(1) ∩ P is a bounded base for �1+, otherwise f
generates an unbounded base. In particular, taking a functional of the latter type:

f := (1/n)n≥1 ∈ inn(�1+)∗

the set f −1(1) ∩ P is an unbounded base for P . We fix this cone and consider the
closed convex bounded set

K = {x ∈ �1 : −1 ≤ f (x) ≤ 0}
⋂

2BX .

It follows directly that 0 ∈ Pos(K , P) and a fortiori 0 ∈ Max(K , P).
On the other hand, taking xn := en − 1

n e1 ∈ 1
n BX + P , for all n ∈ N, where {en}n

is the standard unit-vector basis of �1, we deduce that {xn}n ⊂ K and ‖xn‖ ≥ 1 for
every n ∈ N. This shows that 0 /∈ StMax(K , P).

The following proposition shows that if the cone P has a bounded base (as was the
case in the previous example), the set StMax(K , P) is always nonempty. Therefore, in
Example 1, the set of strictmaxima is nonempty (and strictly contained inMax(K , P)).
This being said, in forthcoming Proposition 3 we shall see that if P does not have a
bounded base, the set of strict maxima can be empty. The key idea of our construction
is to define K as a suitable equivalent unit ball of the Banach space c0, to do this
we use some well-known renorming techniques (see, e.g.,[9, 10] and the references
therein for some related results in this field).
We recall that a functional f ∈ X∗ \ {0} is called a supporting functional of K at x0
if f (x0) = sup f (K ).

Proposition 2 (existence of strict maxima for a bounded based cone) Let K be a
nonempty closed convex bounded subset of a Banach space X and P a convex closed
cone with a bounded base. Then StMax(K , P) �= ∅.

Proof Since P has a bounded base, then intP∗ is nonempty. Hence, by Bishop-Phelps
theorem (see, e.g., [11, Theorem 7.41]), there exists x∗

0 ∈ intP∗ that is a supporting
functional for K at a point x0 ∈ K , i.e., x0 ∈ Pos(K , P). By [5, Corollary 5.4], we
conclude that x0 ∈ StMax(K , P). ��

Let us further denote by c0 := {x = (xn)n ∈ R
N : lim

n→∞xn = 0} the Banach space

of all null real valued sequences equipped with the norm ‖x‖∞ := sup
n≥1

|xn|. Let us
consider the linear operator T : c0 → �2 defined for every x ∈ c0 as follows:

x := (xn) �→ T (x) :=
( xn
2n

)

n≥1
∈ �2. (5)
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Notice that T is injective, continuous and

‖T x‖2 =
√√√√

∑

n≥1

|xn|2
4n

≤
(
1/

√
3
)

‖x‖∞ .

Therefore,
|||x ||| := ‖x‖∞ + ‖T x‖2 (6)

is an equivalent norm on c0. We are now ready to provide an example in which the
set StMax(K , P) is empty, even if Max(K , P) is nonempty, showing the pertinence
of the assumption that the cone P has a bounded base in Proposition 2.

Proposition 3 (example where StMax(K , P) is empty) Consider the Banach space
X = (c0, ||| · |||), where ||| · ||| is the equivalent norm defined in (6). Consider further
the closed convex bounded set K = BX and the lattice cone

P := (c0)+ = {x = (xn) ∈ c0 : xn ≥ 0, for all n ≥ 1}.

Then
StMax(K , P) = ∅ and Max(K , P) �= ∅.

Proof Let us denote by {en}n the canonical basis of c0 and set α := 1 + 1/
√
3. It

follows that
‖x‖∞ ≤ |||x ||| ≤ α ‖x‖∞, for all x ∈ c0.

Set x̄ := 2
3e1 and notice that for all p ∈ P \ {0} we have |||x̄ ||| = 1 < |||x̄ + p|||. It

follows readily that x̄ = 2
3e1 ∈ Max(K , P), therefore the set of maxima of K is not

empty.
It remains to show that StMax(K , P) = ∅. It is sufficient to prove that no point in the
boundary SX of K can be in StMax(K , P).
To this end, let x = (xn) ∈ SX (that is, |||x ||| = 1). Since StMax(K , P) ⊂ Max(K , P)

we can clearly also assume that x ∈ Max(K , P). Therefore

|||x ||| = 1 < |||x + p|||, for all p ∈ P \ {0}.

Notice further that ‖x‖∞ ≥ 1/α. Therefore, since x ∈ c0, there exists n0 ∈ N such
that |xn| ≤ 1/2α, for all n ≥ n0. Setting

pn := (1/2α) en ∈ P

we have:

|||x ||| = 1 < |||x+pn||| = ‖x+ 1
2α en‖∞ +

(
∑

k∈N\{n}
(x2k /4

k) + 1
4n

(
xn + 1

2α

)2
)1/2

.
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Notice that ‖x + 1
2α en‖∞ = ‖x‖∞, for n ≥ n0 and that βn := |||x + 1

2α en||| → 1.
Set

zn = 1

βn
(x + pn) ∈ BX ≡ K

and notice that d(zn, x + P) ≤ |||zn − (x + pn)||| → 0 (since βn → 1).
On the other hand, by the triangular inequality we obtain

|||(x + pn) − zn||| + |||zn − x ||| ≥ |||pn||| > ‖pn‖∞ = 1

2α
.

Since |||(x+ pn)−zn||| → 0, we deduce that zn−x /∈ (1/2α)UX , for all n sufficiently
large, whence x /∈ StMax(K , P). ��

3.2 Failure of Approximation of Max(K, P) by Pos(K, P)

In this subsection, we construct an example showing that the strong version of theABB
theorem fails to hold. This outlines the pertinence of the assumptions of all known
infinite dimensional versions of the result, revealing in particular that the assumptions
in Corollary 1 cannot be removed.
Indeed, we construct a weakly compact convex set in �2 with an isolated maximal
point that is not a point of continuity and cannot be supported by a strictly positive
functional with respect to the natural ordering cone �2+. It is worth pointing out that
the set K in this example will have nonempty interior. On the other hand, the cone P
does not (and cannot) have any bounded base.

Proposition 4 (failure of ABB strong approximation) Let X = �2, P = �2+, and

K = {x = (xn) ∈ X : x1 + x2n ≤ 0, ∀n ≥ 2} ∩ BX .

Then

Max(K , P) ∩UX = {0} and StMax(K , P) ∩UX = Pos(K , P) ∩UX = ∅.

Proof First of all, let us note that if x = (xn) ∈ K \ {0}, then by the definition of K ,
we have x1 < 0. On the other hand, we readily have 0 ∈ Max(K , P).

Now, let us prove that Max(K , P) ∩ UX = {0}. To do this, let x = (xn) ∈
K \ {0} ∩UX . Then the set

Nx := {n ∈ N : n ≥ 2, x2n = |x1|}

is finite (and possibly empty). Take n0 > 1 such that n0 /∈ Nx . Then for ε > 0
sufficiently small we have |x1| > (|xn0 | + ε)2 and xn0 ± ε ∈ UX . It follows that the
segment

J := [x − εen0 , x + εen0 ] ⊂ K ,

and consequently x /∈ Max(K , P), since necessarily x + P intersects J \ {x}.
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We claim that 0 /∈ Pos(K , P). Indeed, let y = (yn) ∈ inn P∗ = �2++ be arbitrarily
chosen. Then taking α > 0 sufficiently small, the point x = (−α,

√
α, 0, . . .) belongs

to K and sup y(K ) ≥ y(x) = −αy1 + √
αy2 > 0 = y(0), showing that y cannot

support K at 0.
Let us now claim that 0 /∈ StMax(K , P). To prove this, let n ∈ N and define zn =
(znk )k ∈ �2 by

znk =

⎧
⎪⎪⎨

⎪⎪⎩

− 1√
2

1
n , if k = 1,

1√
2

1√
n
, if k ∈ {2, . . . , n + 1},

0, if k > n + 1.

Observe that

1 ≥ ‖zn‖2 = 1

2n2
+ n

1

2n
≥ 1

2
(n ∈ N),

and that, by definition of K , we clearly have {zn} ⊂ K . Moreover, setting wn
k =

max{znk , 0} for all n, k ≥ 1, we have {wn}n ⊂ P and d(zn, P) ≤ ‖zn − wn‖ → 0 (as
n → ∞). Therefore the claim follows.
The fact that

StMax(K , P) ∩UX = Pos(K , P) ∩UX = ∅
follows directly from the inclusion

StMax(K , P) ∪ Pos(K , P) ⊂ Max(K , P).

The proof is complete. ��

Remark 2 It is well-known that the closed unit ball B of �2 has the Kadets-Klee
property, which guarantees that every boundary point is a point of continuity from the
weak to the norm topology. The set K in Proposition 4 is a subset of B, containing
the basic vector e1 := (1, 0, . . . ) and constructed in a way that the part around e1 is
sufficiently flattened so that the Kadets-Klee property fails and at the same time there
is no other maximal element near e1.
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