The slope robustly determines convex functions
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Abstract. We show that the deviation between the slopes of two convex functions controls the
deviation between the functions themselves. This result reveals that the slope—a one dimensional
construct—robustly determines convex functions, up to a constant of integration.

Key words. Convex function, subgradient, slope, stability.

AMS Subject Classification Primary 26B25, 49K40 ; Secondary 37C10, 49J52.

1 Introduction

The recent paper [2, Theorem 3.8] established the following intriguing result. Two C2-smooth,
convex and bounded from below functions f, g defined on a Hilbert space H are equal up to an
additive constant if and only if their gradient norms coincide:

IV =1Vl = f=g+cst. (1.1)

This result is ostensibly surprising since it readily yields that the function x — ||V f(z)]|, which
takes values in the real line, determines the entire gradient map = — V f(z), which takes values
in H. In the follow up work [11], the assumption on smoothness of f was further weakened to
continuity with the gradient norm ||V f(z)| replaced by the slope s¢(x) := dist(0,0f(x)). Here
Of(z) denotes the subdifferential of the convex function f at z.!

In this work, we ask whether the slope (or the gradient norm in the smooth case) robustly
determines the function itself. That is, if the slopes for two functions are close, then how close
are the function values? Roughly speaking, we will show that for any two continuous convex
functions f and g defined on a Hilbert space, the following estimate is true:

lg— fllee < llsg—sgllee + \ Isg = sfllu + lg — flleyuc,

Here U is any bounded set where f is bounded, ||-[|zs denotes the sup-norm over U, and Cy and C,
are the sets of minimizers of f and g, respectively. In particular, the deviation ||g — f||;s exhibits
a dependence on ||s; — sf|ys that is at worst Holder with exponent 1/2. In the finite-dimensional
setting H = R"™, we show that this undesirable square root dependence may be dropped:

lg = Fllee S llsg = s¢llec + llg = Fllepue,-

The downside is that the hidden constant in this bound depends on the length of subgradient
curves initialized in U and at worst grows super exponentially in the dimension n.

'We note that further generalizations of the determination result [11] have recently been achieved: for convex
continuous bounded from below functions in Banach spaces (see [12]) and for Lipschitz coervice functions in metric
spaces ([5]). For the time being, we do not pursue our sensitivity analysis in this generality.



2 Notation and preliminaries

Let H denote a Hilbert space and let f : H — R be a convex continuous function. We denote the
set of minimizers of f by
Cy := argmin f,

and suppose that C; is nonempty (therefore the infimum value f, := inf f is attained). The key
object we will focus on is the slope sy(x) = dist(0,0f(x)), where 0f(x) denotes the subdifferential:

Of (@) ={veM: fly) - fx) = (v,y—x), Vo,yeH} (2.1)

Equivalently, s¢(z) measures the fastest instantaneous rate of decrease of f from z.

Our goal is to show that the deviation between the slopes of two convex functions controls the
deviation between the functions themselves. Our arguments will make heavy use of subgradient
dynamical systems, a topic we review now following [1, 3]. Namely, [1, Theorem 17.2.2] shows
that for every initial point x € H, there exists a unique, maximally defined, injective, absolutely
continuous curve 7 : [0, Tiyax) — H, such that

y(t) € —af(v(t))
a.e (GS)
7(0) ==z

Subgradient curves «y satisfy a number of useful properties, summarized below.
(P1) Equality
17(t)]| = sf(y(t)) holds for a.e. t € [0, Tiax)- (2.2)

and the slope function t — s7((t)) is nonincreasing on [0, Tiax)-

(P2) The function r(t) = f(~(t)) is convex and strictly decreasing on [0, Tinax), and
lim f(y(t) = fs

t_)j—‘IIlaX

(P3) The distance function t — d(v(t),Cy) is strictly decreasing on [0, Tax). Moreover, for every
x € Cy, the function ¢ — ||y(t) — x| is strictly decreasing on [0, Tiax)-

Property (P1) follows from [1, Theorem 17.2.2 (iii)-(iv)], (P2) is given in [1, Proposition 17.2.7 ()],
while (P3) follows easily after differentiation, using (GS) and (2.1).

Next, we will require two estimates on the length of subgradient curves. The first (Lemma 2.1)
is an easy consequence of (P1) and (P2) above (we provide a proof for convenience), while the
second (Proposition 2.2) was essentially proved in [10] for a particular class of Lipschitz curves
(therein called I'-curves, ultimately known as self-contracted curves, definition coined in [7]) and
became explicit for subgradient curves in [6, §].

Lemma 2.1 (Length estimation I). Let f: H — R be a convex continuous function with nonempty
set of minimizers and let 7y : [0, Tmax) — H be the solution of (GS). Then for every T € (0, Timax),
setting yr = y(T') we have:

T
/0 SOldt < [sp(vo) ™" (Fla) — £.).
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Proof.  Set r(t) := f(y(t)) and denote by h the inverse function of the mapping ¢t — r(t)
on the interval [0, Tiax). Then for the reparametrization ¥(p) = v(h(p)) we have f(7(p)) =
Differentiating gives

d of(i(p))°
— - , for a.e. p € (fy, f(x)],
i [y(p)] = 5130 p € (fe, [(2)]
where 0f(7(p))° is the element of 0f(7(p)) of minimal norm, thus ||0f(F(p))°|| = ss(F(p))-
Taking into account that the function p — s¢(J(p)) is increasing, we deduce:
T (@) ~ f(r)
xr)—J\r
()| dt = / ———dp < —F————~
/ el 16l s70r)
fOvr)
and the result follows. 0

Proposition 2.2 (Length estimation IT). Assume H = R™. There exists a constant K,, depending
only on dimension such that for every x € R™ the solution y(-) of the subgradient system (GS)
has length bounded by K, - d(x,Cy).

The above result provides a universal bound K, for the ratio between the length of a subgradient
curve and its diameter, the drawback being that that the dependence of K, on the dimension is
of the order of n™/?*1 (see [10, 9]).

3 Main results

For any function w: H — R and a set U C H, we will use the notation

[wles = sup (max{w(z),0})  and  [lwly = sup |w(z)]|.
zel zeld

Note that ||w|y provides a one-sided bound?, while ||w]|y is the standard two-sided sup-norm.

The following is the main theorem of the paper.

Theorem 3.1. Let f,g: H — R be convex continuous functions. Assume Cy = argmin f # ()
and set f, = min f. For each r > 0 define the tube around C'y by

U ={xeH: dxCf) <r}. (3.1)

Then for every x € U,, the estimate holds:

9(@) = f(@) < llsg = s¢lu. + llg = fle, + 2\/d(x,Cf) Mg = sflu - (F(@) = f)- (3.2)

Moreover, in the finite-dimensional setting H = R™, there exists a constant K, > 0 depending
only on the dimension n such that

9(x) = f(z) < Kn lsg = sflu, d(2,Cf) + llg = fle,- (3-3)

ZNotice that || - i/ is the canonical asymmetrization of the seminorm || - |jo of uniform convergence, see [4].




Proof. Let z € H \ Cy be arbitrary and fix 6 > 0. Our goal is to show the estimate

Hsg - 8f|Z/Ir

g9(x) = f(z) < (llsg = sslu. +0) d(z,Cp) + 3

(f(@) = fo) + llg = fley (3.4)

from which (3.2) follows by setting ¢ = \/“Sg_sfi%{;'éfggc)_f*).

We consider two cases:

(i). Suppose that sy(z) < ¢ and let & := proje, (z) be the projection of & to the closed convex
set Cy (therefore f(2) = fi« < f(x)). Then we compute

9(x) = g(2) < sg(@) [lo — 2| < (lIsg — s¢les, +0) d(x,Cy),
where the first inequality follows from convexity of g. We therefore conclude
g9(x) = f(x) = (9(x) — 9(2)) + (9(2) — f(2)) + (f(2) — f(z))
< (llsg = sl +6) d(z, Cy) + llg = fley

thus verifying (3.4).

(ii). Suppose now that s¢(x) > § and let : [0, Tinax) — H denote the unique maximal solution
of the subgradient system (GS) for f. Define the function

a(t) = f(v(t)) = g(v(1))-
Differentiating, for a.e. t € [0, Tmax), we have (c.f. [1, Proposition 17.2.5)):
a(t) = —sp(v(1))* = (9g(+(1))°, 7 (1)),

where dg(7(t))° is the element of minimal norm of dg(y(t)), that is, s4(v(t)) = [|0g(~(¢))°||. From
the Cauchy-Schwarz inequality we conclude:

a(t) < =sp(4(£))* + sg(7(t)) - 57 (7(1))
= (54(v(1)) = 57 (v(1))) s7(7(1)) (3.5)
< llsg = 5¢lea [YD-

Define
T :=sup {t € [0, Tmax) : s¢(y(t)) > d}.

Setting yr := (T and integrating (3.5) on [0, 7] we obtain:

T
g(@) < f(@) + [9(ve) = FOr)] + lIsg — s¢lu, /0 15 (@)1 dt. (3.6)
By Lemma 2.1 and the definition of T" we get:
T
/0 @)l dt < [sp(vr)] ™" (fl@) = fu) <671 (f(2) = fo) - (3.7)
Let 4 = proje, (yr) be the projection of y7 to the set of minimizers Cy. Then
fA) =f<fOr)  and e =9l =d(yr, Cy) < d(z,Cy).
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Taking into account s¢(yr) < 0 we deduce sq(yr) < ||sg — sflu,. + ¢ and consequently
9(vr) = 9(3) < sg(vr) llvr = AN < (lsg = s7l, +6) d(x,Cy),
where the first inequality follows from convexity of g. We readily obtain that:
9(vr) = flyr) < (9tyr) — 9(9) + (9(9) — f) < (lsg = s¢lu, +90)d(2,Cp) + [lg — fle,- (3.8)

Combining (3.6), (3.7), and (3.8) yields the claimed estimate (3.4). Finally, the estimate (3.3)
follows by letting T 1 Tiax in (3.6) and using Proposition 2.2 to bound the length of ~(-). O

An easy consequence of the above is the following guarantee of asymptotic consistency.

Corollary 3.2 (Robust (one-sided) determination). Let f,{fx}r>0 : H — R be convex continuous
functions and suppose that Cy is nonempty and bounded. Assume further that

(i). limsup|[sy, — sflu <0, for all bounded sets U C H; and
k>1

(i). Timsup | fi — flo, <0.
k>1

Then limsup || fx — flu < 0 for all bounded sets U C H.
k>1

Proof. Recalling from Theorem 3.1 the definition of U,., we observe that U, is bounded. Our
assumption can then be restated as follows:

Vr>0: limsup ||sf, —sflu, <0 and limsup || fx — fle, <0.
k>1 k>1

An application of Theorem 3.1 for each r > 0 completes the proof. O

A symmetric version of the corollary follows by an analogous argument.

Corollary 3.3 (Robust (two-sided) determination). Let f, {fr}r>1: H — R be convex continuous
functions such that

Cp. #0, VE>1 and C:=CyU (Up>1Cy,) is bounded.

Assume further that:
(i). sf, converge to s¢ uniformly on bounded sets,
(ii). fx converge to f uniformly on C.
Then fi converge to f uniformly on bounded sets.
Remark 3.4 (open question). Our approach is heavily based on the existence of minimizers. We

do not know if the results of this work can be extended to the class of lower semicontinuous convex
functions, which are bounded for below. This is a challenging question that merits investigation.
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