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Abstract. A necessary and sufficient condition for the horofunction extension (X, d)
h

of a metric space (X, d) to be a compactification is hereby established. The condition

clarifies previous results on proper metric spaces and geodesic spaces and yields the fol-

lowing characterization: a Banach space is Gromov-compactifiable under any renorming

if and only if it does not contain an isomorphic copy of ℓ1. In addition, it is shown that,

up to an adequate renorming, every Banach space is Gromov-compactifiable. There-

fore, the property of being Gromov-compactifiable is not invariant under bi-Lipschitz

equivalence.
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1. Introduction and preliminary results

A compactification for a topological space X is a pair (Y, i), where Y is a compact space

and i : X → Y is a continuous injection such that i(X) ⊂ Y is dense and i is a homeo-

morphism from X to i(X). If the injection i is canonical or implicitly known, we simply

say that the compact space Y is a compactification of the space X.

Classical instances of compactification are the Alexandroff (one-point) compactificationX∞
(for locally compact spaces) and the Stone-Čech compactification βX (for completely reg-

ular spaces), corresponding to the two extreme cases in terms of size.

Gromov [15] proposed a new compactification scheme in case that (X, d) is a metric space.

This is based on the identification of each point z of the space with the distance function

d(·, z) to it (modulo constant functions), providing a natural injection ofX to a quotient of

the space of 1-Lipschitz functions (endowed with the pointwise topology). Gromov called

horofunction extension of X the closure X
h
of the image of X there (see more details in

Subsection 1.1). For applications of the horofunction extension and related constructions

in more abstract settings, we refer to [1, 12, 24, 25].

In general, the horofunction extension of a metric space (X, d) is not a (topological) com-

pactification of X, since the aforementioned injection of the space does not necessarily

yield a homeomorphism over its image. In this work we use the following terminology:

Definition 1.1 (Gromov-compactification). We say that a metric space (X, d) is Gromov-

compactifiable if the horofunction extension X
h
is a (topological) compactification for X.

There are several known examples of Gromov-compactifiable spaces, as for instance proper

geodesic spaces [3] or Hilbert spaces [23], as well as sufficient criteria on the space ensuring

this property [11]. However, a complete characterization of Gromov-compactifiability was

still up-to-date unavailable. The current work aims to fulfill this gap.

Our main contributions are:

• A necessary and sufficient condition for a metric space (X, d) to be Gromov-

compactifiable (Theorem 2.1).

• (characterization for normed spaces) A normed space (X, ∥ · ∥) is not Gromov-

compactifiable if and only if the Hausdorff distance of the sphere of any finite

dimensional subspace ofX to the sphere ofX is equal to 2 (Theorem 2.5 (a)⇔(c)).

• (ℓ1-criterium) A normed space is Gromov-compactifiable under any renorming if

and only if it does not contain an isomorphic copy of ℓ1 (Theorem 2.10).

• Every Banach space can be renormed to become Gromov-compactifiable (Corol-

lary 2.14). In particular, Gromov-compactifiability is not invariant under bi-

Lipschitz homeomorphisms.

The paper is organized as follows: in the rest of this section we review the State-of-the-

art and provide motivation for this study. Section 2 contains our main results formulated
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for general metric spaces (Subsection 2.1) and subsequently for normed spaces (Subsec-

tion 2.2). Subsection 2.3 underlines the prominent role of ℓ1 to characterize Gromov-

compactifiability under any renorming. Applications are given in Subsection 2.4 (for

normed spaces) and in Subsection 2.5 (for metric spaces). In Section 3 we discuss alter-

native constructions, further consequences and connections with other results.

1.1. Original definition of the horofunction extension. The notion of horofunction

extension of a metric space (X, d) goes back to Gromov in [15] (see also [3]) and was

defined as follows. For each z ∈ X, consider the distance function dz := d(·, z). It is not
difficult to see that the mapping

ι : X → C(X)

defined by ι(z) := dz is a topological embedding of X into the space C(X) of continuous

real functions on X, endowed with the compact-open topology. We introduce the equiva-

lence relation in C(X) given by f ∼ g if, and only if, f − g is constant. Denote by Ĉ(X)

the corresponding quotient space and by π : C(X) → Ĉ(X) the natural quotient map. It

is easy to check that ι̂ := π ◦ ι : X → Ĉ(X) is one-to-one. Indeed, if ι̂(z) = ι̂(z′), there

exists some c ∈ R so that d(x, z) = d(x, z′) + c for all x ∈ X. In particular, choosing x to

be z and z′, we respectively obtain that

0 = d(z, z′) + c and d(z′, z) = c

from which we deduce that z = z′. Therefore, we have that ι̂ : X → Ĉ(X) is a continuous

injection. Now we define the horofunction extension X
h
of X as the closure of ι̂(X) in

Ĉ(X), and we call X
h \X the horofunction boundary of X. The elements of X

h
will be

called horofunctions of X.

On the other hand, if we fix an arbitrary point x0 ∈ X and we consider the closed

subspace Cx0(X) of C(X) formed by all continuous real functions on X vanishing at x0,

we see that Ĉ(X) is naturally isomorphic to Cx0(X) by means of the mapping that sends

the equivalence class [f ] ∈ Ĉ(X) to the function f − f(x0) ∈ Cx0(X). Composing with

this isomorphism, we obtain the continuous injection

ιx0 : X → Cx0(X)

given by

ιx0(z)(·) = d(·, z)− d(x0, z).

It is then clear that the horofunction extension X
h
of X can be canonically identified

with the closure of ιx0(X) in Cx0(X), which in particular does not depend on the chosen

base point x0. Note that, for each z ∈ X, the function

x 7→ ιx0(z)(x) = d(x, z)− d(x0, z)

is 1-Lipschitz and satisfies that

−d(x0, x) ≤ ιx0(z)(x) ≤ d(x, x0)
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for every x ∈ X. This yields that the family of functions {ιx0(z)(·)}z∈X is equicontinuous

and pointwise relatively compact in C(X) and consequently, from Arzela-Ascoli theorem,

we deduce that the horofunction extension X
h
of X is a compact space.

The following subsection provides an alternative way to obtain the same conclusion.

1.2. Construction using 1-Lipschitz functions. Let (X, d) be a metric space and

consider a fixed base point x0 ∈ X. We follow here the construction of [16]. Denote by

Lip1
x0
(X) the space of all 1-Lipschitz real-valued functions on X vanishing at x0. Notice

that for every f ∈ Lip1
x0
(X) we have:

−d(x0, x) ≤ f(x) ≤ d(x, x0), for all x ∈ X.

Therefore, identifying f by its values (f(x))x∈X we readily obtain:

Lip1
x0
(X) ⊂

∏
x∈X

[−d(x0, x), d(x, x0)] ⊂ RX

Notice that by Tychonoff theorem the above product is a compact space. Endowing

Lip1
x0
(X) with the pointwise topology inherited from the Cartesian product RX , we con-

clude easily that Lip1
x0
(X) is closed. As a consequence, Lip1

x0
(X) is in fact a compact

subspace of RX . On the other hand, it is easily seen that the compact-open topology of

Lip1
x0
(X) coincides with its pointwise topology.

Now for each z ∈ X, let us denote by brevity

hz(·) := ιx0(z)(·) = d(·, z)− d(x0, z).

Then hz ∈ Lip1
x0
(X). It follows easily that the mapping

(1.1)

{
h : X → Lip1

x0
(X) ⊂ RX

h(z) := hz

is well-defined and is a continuous injection. Since Lip1
x0
(X) is closed in Cx0(X), and

the compact-open topology on Lip1
x0
(X) coincides with the pointwise topology, we obtain

that the horofunction extension X
h
of X coincides with the pointwise closure of h(X) in

Lip1
x0
(X), and is therefore a compact set.

Proposition 1.2 (Horofunction extension vs dense subsets). Let (X, d) be a metric space.

(i). If Z is a dense subspace of X, then Z
h
is homeomorphic to X

h
.

(ii). If X is separable, then X
h
is metrizable.

Proof. (i). Let Z be dense in X and fix x0 ∈ Z. It is clear that the natural restriction

map

r : Lip1
x0
(X) → Lip1

x0
(Z)
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is a homeomorphism when we consider, respectively, the topology of pointwise convergence

on X and the topology of pointwise convergence on Z. We consider, as before, the

mapping h given by (1.1) and its restriction to Z:

h|Z : Z → Lip1
x0
(Z) ⊂ RZ .

Since Z is dense in X, we have that the closures of h(Z) and h(X) in Lip1
x0
(X) coincide.

On the other hand, since r is a homeomorphism, the closure of h|Z (Z) in Lip1
x0
(Z) is

r(h(Z)). Thus the mapping r is a homeomorphism between X
h
and Z

h
.

(ii). If X is separable, choose a countable dense subspace Z. Then we have

h : X → Lip1
x0
(X) ≈ Lip1

x0
(Z) ⊂ RZ

Since Z is countable, the space RZ (equipped with the Cartesian topology) is metrizable.

The proof is complete. ■

Remark 1.3 (Completion). It follows from the above proposition that the horofunction

extension of any metric space coincides with the horofunction extension of its completion.

1.3. Injection versus embedding. Let (X, d) be a metric space. We already saw that

the horofunction extension X
h
is a compact space and the injection h : X → h(X) ⊂ X

h

is continuous. Nevertheless X
h
is not, in general, a compactification of X: indeed, this

would require h : X → h(X) ⊂ X
h
to be a topological embedding, that is, h to be a

homeomorphism from X to h(X). This is not always the case, even if the space X is

proper (that is, every closed bounded subset of X is compact). To illustrate this, we give

the following example:

Example 1.4. Consider the Banach space ℓ1(N) endowed with its usual norm, given by

∥x∥ =
∑∞

k=1 |xk|, for every sequence x = (xk) ∈ ℓ1(N). For n = 0, set z0 = 0, and for each

n ≥ 1, set zn = nen, where {en} denotes the unit vector basis of ℓ1(N). Now, for n ≥ 0,

consider the closed segment Sn := [zn, zn+1], and define the ℓ1-ray by

(1.2) X :=
⋃
n≥0

Sn

with the metric inherited from the ℓ1-norm.

Notice that for any x ∈ Sn, we have x = (1 − t)nen + t(n + 1)en+1 for some 0 ≤ t ≤ 1,

yielding ∥x∥ ≥ n. As a consequence, denoting by Bk the closed ball in ℓ1(N) centered

at 0 with radius k ∈ N, we deduce that X ∩ Bk is contained in S1 ∪ · · · ∪ Sk, which is

compact. Therefore X is a proper metric space.

Let us now choose x0 = 0 as a base point and consider the corresponding mapping{
h : X → RX

z 7→ hz(·) := ∥ · −z∥ − ∥z∥
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Figure 1. Representation of the space (inside ℓ1).

for every z ∈ X. In order to see that h is not a topological embedding, we consider

the sequence (zn)n≥0 ⊂ X, where zn = nen. It is clear that (zn)n≥0 does not converge to

z0 = 0 in X. Nevertheless from the following claim we have that the sequence of functions

(hzn) converges pointwise on X to the function h0 = ∥ · ∥.
Claim. Let (an) be a sequence in X such that (∥an∥) → ∞. Then the sequence (han)

converges pointwise on ℓ1(N) to the function h0 = ∥ · ∥.
Proof of the claim. Indeed, let us denote by c00(N) the space of eventually null sequences,

that is, x̄ ∈ c00(N) if and only if x̄ has finite nonzero terms. Since c00(N) is dense in ℓ1(N),
fixing x ∈ ℓ1(N) and ε > 0, we can find x̄ = (x̄i) ∈ c00(N) such that ∥x − x̄∥ ≤ ε. Let

k ∈ N be such that x̄i = 0 for all i ≥ k and let n0 ∈ N be such that an /∈ S1 ∪ · · · ∪Sk, for

every n ≥ n0 (this is possible since (an) ⊂ X and ∥an∥ → ∞). It follows that for n ≥ n0,

the sequences an and x̄ have disjoint supports. Therefore

∥x̄− an∥ = ∥x̄∥+ ∥an∥.

Then

han(x)−h0(x) = ∥x−an∥−∥an∥−∥x∥ ≤ ∥x−x̄∥+∥x̄−an∥−∥an∥−∥x∥ ≤ ε+∥x̄∥−∥x∥ ≤ 2ε

and

han(x)− h0(x) = ∥x− an∥ − ∥an∥ − ∥x∥ ≥ ∥x̄− an∥ − ∥x− x̄∥ − ∥an∥ − ∥x∥ ≥ −2ε.

Let us finally describe the horofunction extension of the metric space X given in (1.2).

From Proposition 1.2 we have that X
h
is metrizable, so every function f ∈ X

h
is the

pointwise limit of a sequence in h(X). Let (an) be a sequence in X such that han converges

to f . If (an) is bounded, it admits a subsequence (anj
) convergent to some a ∈ X. Then
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(hanj
) (and thus (han)) converges to ha, so f = ha. Otherwise, if (an) is not bounded, it

admits a subsequence (anj
) such that (∥anj

∥) converges to ∞, so by the previous claim

we have that (han) converges to h0. This shows that X
h
= h(X) (as a set) and the

horofunction boundary X
h \h(X) is empty. Let us finally notice that X is homeomorphic

to the ray [0,+∞) and X
h
is homeomorphic to the circle S1.

Remark 1.5. Using the previous claim and a similar argument, we can see that also for

the space X = ℓ1(N), the injection h : X → RX is not a topological embedding. Therefore,

the Banach space ℓ1(N) is not Gromov-compactifiable. We shall see in Section 2 that

ℓ1(N) represents a prototype of pathology for normed spaces.

It is well-known that every finite dimensional normed space is Gromov-compactifiable.

Indeed, from [11, Lemma 2.2] we have

Proposition 1.6. Let X be a proper metric space such that every ball is path-connected.

Then, h : X → RX is a topological embedding.

Outside the finite dimensional framework, we consider the case of infinite dimensional

Hilbert spaces.

Example 1.7 (Hilbert spaces are Gromov-compactifiable). The horofunction extension

of an infinite-dimensional Hilbert space H is a compactification.

Proof. Let H be an infinite dimensional Hilbert space. We are going to show directly

that h : H → h(H) is a topological embedding. Let (zλ) be a net in X such that (hzλ)

converges pointwise to hz for some z ∈ H. We consider two cases:

– The net (zλ) is bounded in H. In this case, taking subnets we may assume that (zλ)

converges weakly to some z0 ∈ H and also cλ := ∥zλ∥ converges to some c ≥ 0. For every

x ∈ H
hzλ(x) = ∥x− zλ∥ − ∥zλ∥ =

√
∥x∥2 − 2⟨x, zλ⟩+ c2λ − cλ

converges to √
∥x∥2 − 2⟨x, z0⟩+ c2 − c

and also to

hz(x) =
√

∥x∥2 − 2⟨x, z⟩+ b2 − b

where we denote b := ∥z∥. Thus for every x ∈ {z, z0}⊥, we have that√
∥x∥2 + c2 − c =

√
∥x∥2 + b2 − b

From elementary calculus, we see that, if b ̸= c, the function

g(t) :=
√
t2 + c2 − c−

√
t2 + b2 + b, t ≥ 0

is strictly monotone. Therefore, we conclude that b = c. Then, for every x ∈ H we have

that ⟨x, z0⟩ = ⟨x, z⟩, so z0 = z. In this way we see that (zλ) converges weakly to z and
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(∥zλ∥) converges to ∥z∥. Thus (zλ) converges to z in norm.

– The sequence (zλ) is not bounded in H. Then taking a subnet we may assume that

(∥zλ∥) converges to +∞, so by [17, Lemma 4.3] we deduce that (hzλ) converges pointwise

to a linear functional. But this is not possible, since hz cannot be a linear functional.

The proof is complete. ■

In Section 2, we shall see that the horofunction extension is a compactification for all

reflexive Banach spaces (thus for all ℓp spaces, with 1 < p < ∞). For a description of

horofunctions of Hilbert space and ℓp spaces, we refer to Gutiérrez [17, 16].

We shall now give a topological description of the horofunction extension of the sphere

of a Hilbert space. Notice that, thanks to the Kadets-Klee property, the topology on the

sphere inherited from (the norm-topology of) the Hilbert space coincides with the weak

topology.

Example 1.8. Let H be an infinite-dimensional Hilbert space and let us denote by X = SH

its unit sphere. Then the horofunction extension X
h
is a compactification of SH, homeo-

morphically equivalent to the closed unit ball BH endowed with the weak topology.

Proof. Fix a base point x0 ∈ SH and let z ∈ BH. Since the unit sphere SH is dense in

BH for the weak topology, there exists a net (zλ) ⊂ SH weakly convergent to z. Then for

each x ∈ SH the net

hzλ(x) := ∥x− zλ∥ − ∥x0 − zλ∥ =︸ ︷︷ ︸
∥zλ∥=∥x∥=∥x0∥=1

√
2− 2⟨x, zλ⟩ −

√
2− 2⟨x0, zλ⟩

converges to the function

ψz(x) :=
√

2− 2⟨x, z⟩ −
√

2− 2⟨x0, z⟩,

yielding that ψz is a horofunction of SH. Therefore the map

(1.3)

{
ψ : (BH,weak) → X

h

z 7→ ψ(z)(·) := ψz(·) =
√
2− 2⟨·, z⟩ −

√
2− 2⟨x0, z⟩

is well-defined. It is clear that ψ is continuous and ψz coincides with the horofunction hz
whenever z ∈ SH.

Claim 1: The function ψ is injective.

Proof of Claim 1. Suppose that ψ(z) = ψ(z′), where z, z′ ∈ BH. Then for each x ∈ SH,√
2− 2⟨x, z⟩ −

√
2− 2⟨x0, z⟩ =

√
2− 2⟨x, z′⟩ −

√
2− 2⟨x0, z′⟩

and choosing x ∈ {z, z′}⊥ we deduce that
√

2− 2⟨x0, z⟩ =
√

2− 2⟨x0, z′⟩ and conclude

that for every x ∈ SH, √
2− 2⟨x, z⟩ =

√
2− 2⟨x, z′⟩.
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Since ∥x∥ = 1 and ∥z∥2 ≤ ∥z∥ ≤ 1 we deduce that 2− 2⟨x, z⟩ ≥ ∥x∥2− 2⟨x, z⟩+ ∥z∥2 ≥ 0

and the same holds for z′. Therefore

⟨x, z⟩ = ⟨x, z′⟩,

for every x ∈ SH. As a consequence, we obtain that z = z′.

Claim 2: The function ψ is surjective.

Proof of Claim 2. Consider a horofunction f ∈ X
h
. Then there is a net (zλ) ⊂ SH

such that the net (hzλ) converges to f pointwise on SH. By the weak compactness of the

closed ball, there is a subnet (z′β) weakly convergent to some point z ∈ BH. Then (hz′β)

converges pointwise on SH to f and also to ψz, so f = ψz.

Since (BH,weak) is compact, it follows from a standard argument that ψ is a home-

omorphism. Since ψ|SH = h, it follows that SH = ψ−1(h(SH)) and the horofunction

extension X
h
of SH is a compactification (homeomorphic to (BH,weak)). This completes

the proof. ■

In the light of the previous examples, a natural question appears: characterize the

metric spaces (X, d) for which the horofunction extension X
h
is a compactification of X,

that is, what we have called in Definition 1.1 Gromov-compactifiability.

2. Main results

In this section we establish a criterium for the horofunction extension to be a compact-

ification. This is done in the most general setting (that of general metric spaces) and

subsequently specified to the particular case of normed spaces as well as to specific types

of metric spaces.

2.1. A general characterization for metric spaces. We start with a general purely

metric characterization of metric spaces X which are Gromov-compactifiable.

Theorem 2.1 (Characterization of Gromov-compactifiability in metric spaces). Let (X, d)

be a metric space. The following conditions are equivalent:

(a) The horofunction extension X
h
is a compactification of X.

(b) For every point x ∈ X and every r > 0, there exist some ηr > 0 and a compact

set Kr ⊂ X such that, for each z ∈ X \B(x, r) there exists w ∈ Kr with

d(w, z) ≤ d(w, x) + d(x, z)− ηr.

Proof. Let us fix x0 ∈ X to be a base point for X. Therefore, for every z ∈ X we have

hz(·) := d(·, z)− d(x0, z).
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(b) ⇒ (a). We proceed towards a contradiction, that is, we assume that (b) holds true

but the (continuous injective) function h : X → h(X) ⊂ X
h
is not bicontinuous, that is,

h−1 is not continuous. Therefore, there exist a net (zλ)λ∈Λ ⊂ X and x ∈ X such that

(hzλ) → hx uniformly in compact sets, but (zλ) ̸→ x.

Therefore, there is r > 0 such that the set

Λ0 := {λ ∈ Λ : d(zλ, x) ≥ r}

is a cofinal of Λ. Thus, (zλ)λ∈Λ0 is a subnet of (zλ)λ∈Λ. Fix ηr > 0 and the compact set

Kr given by statement (b). Consider now the set

Λ1 := {λ ∈ Λ0 : zλ /∈ Kr}

Claim: Λ1 is a cofinal of Λ0 and therefore, (zλ)λ∈Λ1 is a subnet of (zλ)λ∈Λ.

Proof of the claim: Indeed, otherwise the set Γ1 := Λ0 \ Λ1 is a cofinal of Λ0. Since

(zλ)λ∈Γ1 ⊂ Kr, by compactness there is a subnet (zβ)β∈Γ2 convergent to some point z ∈ Kr.

Note that z ̸= x. Since the mapping h : X → X
h
is continuous, we have that

hx = lim
λ∈Λ

hzλ = lim
β∈Γ2

hzβ = hz

Since h is injective, we get a contradiction. This completes the proof of the claim.

For any λ ∈ Λ1, let wλ ∈ Kr be the point given by statement (b) associated to zλ, i.e.

d(wλ, zλ) ≤ d(wλ, x) + d(x, zλ)− ηr, for all λ ∈ Λ1.

Since (hzλ)λ∈Λ1 converges to hx uniformly on compact sets, it converges uniformly on

Kr ∪ {x}. So, we have that

hx(x)− hzλ(x) = −d(x0, x)− d(x, zλ) + d(x0, zλ) := αλ → 0.

However,

hx(wλ)− hzλ(wλ) = d(wλ, x)− d(x0, x)− d(wλ, zλ) + d(x0, zλ)

= αλ + d(x, zλ) + d(wλ, x)− d(wλ, zλ)

≥ αλ + ηr → ηr > 0.

This contradicts the fact that (hzλ)λ∈Λ1 converges to hx uniformly on Kr ∪ {x}.
(a) ⇒ (b). If X is compact, the result follows trivially by choosing, given r > 0, ηr = r,

Kr = X and w = z. If X is not compact, we proceed by a contrapositive argument,

that is, we assume that (b) does not hold and we prove that h−1 is not continuous. Since

X is not compact, then it is not pseudocompact and there exists a continuous function

f : X → R such that f(x) > 0 for all x ∈ X and infX f = 0 (see e.g. [8]). Let us define

K := {K ⊂ X : K nonempty compact}
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and the partial order ≤ on K given by the set inclusion:

for all K1, K2 ∈ K, K1 ≤ K2 ⇔ K1 ⊂ K2.

Consider now the net (ηK)K∈K ⊂ R defined by

ηK := min{f(x) : x ∈ K} > 0, for all K ∈ K.

Since infX f = 0, it follows that (ηK)K∈K converges to 0. Choose x ∈ X and r > 0 for

which the statement (b) does not hold. Then for each compact set K ∈ K there is some

zK ∈ X \B(x, r) satisfying

d(w, zK) > d(w, x) + d(x, zK)− ηK , for all w ∈ K.

We show that (hzK )K∈K converges to hx uniformly on compact sets, but (zK)K∈K does

not converges to x. The second part is clear from the fact that d(x, zK) ≥ r > 0 for all

K ∈ K. Now fix L0 ∈ K. Then, for any L ∈ K such that L ⊃ L0 ∪ {x0} we have that

|hzL(x)− hx(x)| = |d(x, zL)− d(x0, zL)− d(x, x) + d(x0, x)|
= d(x0, x) + d(x, zL)− d(x0, zL) := αL < ηL.

Observe that the above inequality follows from the fact that x0 ∈ L. Now, for any w ∈ L0,

we have that

|hzL(w)− hx(w)| = |d(w, zL)− d(x0, zL)− d(w, x) + d(x0, x)|
= |d(w, zL)− d(w, x) + αL − d(x, zL)|
≤ d(w, x) + d(x, zL)− d(w, zL) + αL ≤ 2ηL.

Therefore, we have shown that for any L ≥ L0 ∪ {x0},

sup{|hx(w)− hzL(w)| : w ∈ L0} ≤ 2ηL → 0.

Since L0 is an arbitrary compact subset of X, we have that (hzK )K∈K converges to hx
uniformly on compact sets. Therefore, h−1 : h(X) → X is not continuous. ■

Remark 2.2. Statements (a) and (b) of Theorem 2.1 are also equivalent to the following:

(c) For every x ∈ X and r > 0, there exist ηr > 0 and a finite set Kr ⊂ X such that

for every z ∈ X \B(x, r) there exists w ∈ Kr satisfying

d(w, z) ≤ d(w, x) + d(x, z)− ηr.

Indeed, (c) ⇒ (b) follows readily (since every finite set is compact). Assume now that

(b) holds, fix x ∈ X, r > 0 and let η > 0 and K ⊂ X given by statement (b). Since K

is compact, there exists a finite set A ⊂ K which is an η/3-net of K. For any w ∈ K,

take aw ∈ A such that d(w, aw) ≤ η/3. Let z ∈ X \ B(x, r). Then there is w ∈ K such

that d(w, z) ≤ d(w, x) + d(x, z)− η. Therefore d(aw, z) ≤ d(aw, x) + d(x, z)− ηr
3
. Setting

ηr :=
η
3
and Kr = A, we see that (c) holds true.
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A very interesting consequence of the above characterization is the following result, which

provides a completely new insight to the situation observed in Example 1.8.

Corollary 2.3 (Gromov-compactifiability of the sphere of any normed space). Let (M,d)

be a bounded metric space such that for every x ∈M we have:

(2.1) sup
y∈M

d(y, x) = diam(M) := sup
y,z∈M

d(y, z).

Then M is Gromov-compactifiable.

In particular, the unit sphere SX of any normed space X (equipped with the distance

inherited by the norm) is always Gromov-compactifiable.

Proof. Assume that the metric space (M,d) is bounded and satisfies (2.1). We shall show

that condition (b) of Theorem 2.1 is fulfilled.

To this end, let x ∈ M and r > 0. If r ≥ diam(M), the conclusion of (b) is vacuously

satisfied. Therefore, we may assume that r < diam(M). Then we fix η = r/2 and choose

y ∈M such that

d(y, x) ≥ diam(M)− r

2
.

We set K = {y} and observe that for any z ∈M \B(x, r) we have

d(y, x) + d(x, z) ≥
(
diam(M)− r

2

)
+ r ≥ d(y, z) + η.

The second part of the statement is straightforward, since for the metric space M = SX

(unit sphere of a normed space X) and for any x ∈ SX , we can take y := −x ∈ SX and

observe that

d(x,−x) = 2 = diam(SX).

The proof is complete. ■

2.2. A general characterization for normed spaces. We now provide several appli-

cations of Theorem 2.1 for (infinite dimensional) normed spaces. We start with the a

general characterization. In what follows, dH(A,B) stands for the Hausdorff-Pompeiu

distance between two subsets A and B of a metric space (X, d), that is,

dH(A,B) := max

{
sup
x∈A

d(x,B), sup
x∈B

d(x,A)

}
,

where d(x,C) = inf
y∈C

d(x, y), for any x ∈ X and C ⊂ X.

Notice that in the special case that A ⊂ B we have:

dH(A,B) = sup
x∈B

d(x,A).

In what follows, we shall need the following lemma. The proof follows easily from the

triangle inequality.
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Lemma 2.4. For any two vectors u, v ∈ X and t ≥ 1 it holds:

∥u∥ − ∥v − u∥ ≤ t∥u∥ − ∥v − tu∥.

The main result of this subsection reads as follows.

Theorem 2.5 (Characterization of Gromov-compactifiability in normed spaces). For a

normed space (X, ∥·∥) the following statements are equivalent:

(a) The horofunction extension X
h
is a compactification of X.

(b) There exist η > 0, M > 0 and a finite dimensional subspace F ⊂ X such that for

every z ∈ X \B(0, 1), there is w ∈MBF := B(0,M) ∩ F with

∥z − w∥ ≤ ∥z∥+ ∥w∥ − η.

(c) For some finite dimensional subspace F ⊂ X we have:

dH(SF , SX) < 2

where SF and SX denote the unit spheres of F and X respectively.

Proof. Let us first notice that if X is finite dimensional, then all assertions are true.

Indeed, Proposition 1.6 yields that X
h
is a compactification of X, (b) follows easily by

taking F = X, r = η = 1 and w = z/∥z∥ and (c) follows trivially by choosing F = X.

Let us now assume that X is infinite dimensional. We prove the following chain of

implications: (a) ⇒ (b) ⇒ (c) ⇒ (a).

(a) ⇒ (b): It follows directly from Theorem 2.1 and Remark 2.2 (c). Indeed, for 0 ∈ X

and r = 1, let K ⊂ X be finite and η > 0 such that for any z ∈ X \B(0, 1), there is w ∈ K

such that ∥w − z∥ ≤ ∥w∥+ ∥z∥ − η. Set F = span(K) and M := max{∥w∥ : w ∈ K}.
(b) ⇒ (c): Let η > 0, M > 0 and F finite dimensional subspace of X be given by

statement (b). Without loss of generality, we may assume that M > 1. Fix z̄ ∈ SX . Since

∥z̄∥ = 1 we have z :=Mz̄ ∈ X \B(0, 1) and there exists w ∈MBF such that

η ≤ ∥z∥+ ∥w∥ − ∥z − w∥.

Note that w ̸= 0. Applying Lemma 2.4 for t =M/∥w∥, we obtain that

∥w∥ − ∥z − w∥ ≤ ∥tw∥ − ∥z − tw∥ =M −
∥∥z −M(w/∥w∥)

∥∥.
Summing up both last inequalities, we have:

η ≤ 2M −
∥∥z −M(w/∥w∥)

∥∥ and consequently
η

M
≤ 2−

∥∥z̄ − (w/∥w∥)
∥∥ .

Since w/∥w∥ ∈ SF and above holds true for every z̄ ∈ SX , we deduce that

dH(SF , SX) ≤ 2− η

M
< 2 .

(c) ⇒ (a): Since the distance (d(x1, x2) = ∥x1 − x2∥) in a normed space is invariant

under translations, we only need to check the statement (b) of Theorem 2.1 for x = 0.



14 A. DANIILIDIS, M. I. GARRIDO, J. A. JARAMILLO, S. TAPIA-GARCÍA

Let F ⊂ X be given by statement (c), that is, η < 2 − dH(SF , SX) for some η > 0 and

let us denote by K the closed unit ball BF of F , which is a compact set. The implication

readily follows from the next claim.

Claim: For any r > 0, the statement (b) of Theorem 2.1 is satisfied for x = 0 by taking

ηr = rη and Kr = rK.

Proof of the claim. Fix r > 0. Observe that, for every z ∈ X \ B(0, r), we have

r−1z ∈ X \B(0, 1). Since t := (1/r)∥z∥ ≥ 1, applying Lemma 2.4 for u = z/∥z∥ and

v = w ∈ SF we obtain:∥∥(z/∥z∥)∥∥− ∥∥(z/∥z∥)− w
∥∥ ≤

∥∥(1/r)z∥∥− ∥∥(1/r)z − w
∥∥.

By hypothesis (c), for some w ∈ SF we have:∥∥(z/∥z∥)− w
∥∥ ≤ 2− η =

∥∥(z/∥z∥)∥∥+ ∥w∥ − η.

Summing up both last inequalities and then multiplying both sides of the resulting in-

equality by r, we obtain

∥z − rw∥ ≤ ∥z∥+ ∥rw∥ − rη.

Since rw ∈ rK = Kr and rη = ηr > 0, the result follows. ■

2.3. Gromov-compactifiability under renormings. In this subsection we obtain con-

crete applications of Theorem 2.5 in connection with the geometry and structure of Banach

spaces. Let us recall that a Banach space (X, ∥·∥) is said to be octahedral (see [6, 13]

e.g.) if, for every η > 0 and every finite-dimensional subspace F of X, there exists a point

z ∈ SX such that

∥z − w∥ ≥ (1− η)(1 + ∥w∥), for all w ∈ F.

In order to connect this property with the conditions of Theorem 2.5, the following chara-

cterization of octahedrality, given in [18, Proposition 2.2], will be useful.

Proposition 2.6 (Characterization of octahedrality). The following assertions are equiv-

alent for a Banach space (X, ∥·∥):
(i). (X, ∥·∥) is octahedral.
(ii). For every η > 0 and every finite set of points w1, . . . , wn ∈ SX , there exists z ∈ SX

such that

∥z − wi∥ ≥ 2− η, for all i ∈ {1, . . . , n}.

Using the above result, we can obtain a further geometric characterization of Gromov-

compactifiablity for Banach spaces.

Theorem 2.7 (Characterization by non-octahedrality). The following assertions are

equivalent for a Banach space (X, ∥·∥):

(i). The horofunction extension X
h
is a compactification of X.
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(ii). (X, ∥·∥) is not octahedral.

Proof. Let us assume that (ii) fails, that is, the space (X, ∥·∥) is octahedral and let us

consider a finite-dimensional subspace F of X. Then for every η > 0, there exists a point

z = zη ∈ SX such that

∥zη − w∥ ≥ (1− η)(1 + ∥w∥), for every w ∈ F.

Taking w ∈ SF we deduce that ∥zη − w∥ ≥ 2(1 − η) = 2 − 2η and consequently

dist(zη, SF ) ≥ 2 − 2η, yielding dH(SF , SX) ≥ 2. Therefore, condition (c) of Theorem 2.5

fails, so the horofunction extension X
h
is not a compactification of X.

Conversely, assume that condition (c) of Theorem 2.5 fails. Then for each finite-

dimensional subspace F of X we have that dH(SF , SX) ≥ 2. Let further η > 0 and

a finite set of points w1, . . . , wn ∈ SX . Setting F := span{w1, . . . , wn} we deduce that

there exists some z ∈ SX such that dist(z, F ) ≥ 2− η. This yields that ∥z − wi∥ ≥ 2− η

for all i ∈ {1, . . . , n}, so from Proposition 2.6 we conclude that (X, ∥·∥) is octahedral. ■

In what follows, we are interested in the behavior of the horofunction extension of a

normed space under renormings. To this end, let us introduce the following definition.

Definition 2.8 (Stable Gromov-compactification). A Banach space (X, ∥·∥) is said to

be stably Gromov-compactifiable if for every equivalent norm |||·||| of ∥·∥, the horofunction

extension (X, |||·|||)
h
is a compactification of (X, |||·|||).

We shall also need the following result of Godefroy [13] (see also [6, Theorem III.2.5])

regarding the space ℓ1 := ℓ1(N). We mention for completeness that this result was gener-

alized in [2] for the spaces ℓ1(κ).

Theorem 2.9 (Godefroy’s characterization of spaces containing ℓ1). The following as-

sertions are equivalent for a Banach space (X, ∥·∥):
(i). X contains an isomorphic copy of ℓ1.

(ii). X admits an equivalent octahedral norm.

Combining Theorem 2.7 with Theorem 2.9 we obtain readily the following characteri-

zation of Gromov-compactifiability under any renorming.

Theorem 2.10 (Gromov-compactifiability under renorming). Let (X, ∥·∥) be a Banach

space. The following are equivalent:

(i). X does not contain an isomorphic copy of ℓ1.

(ii). X is stably Gromov-compactifiable.
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2.4. Applications in Banach spaces. In this section we illustrate our previous results

in normed spaces. Theorem 2.10 recovers (and improves) previous results on Gromov-

compactifiability for finite normed spaces and for Hilbert spaces mentioned in the in-

troduction. These results are now reinforced, since they hold for any renorming. The

same conclusion also applies for the classical ℓp-spaces (or more generally Lp(Ω, µ)), for

all p ∈ (1,+∞). This is a consequence of the following result.

Corollary 2.11 (Asplund spaces are Gromov-compactifiable). Asplund spaces (therefore,

in particular, reflexive Banach spaces) are stably Gromov-compactifiable.

Proof. Recall that every reflexive Banach space is Asplund ([9, Corollary 11.10] e.g.).

Moreover, if a Banach space X contains an isomorphic copy of ℓ1, then it contains in

particular a separable subspace with a non-separable dual and consequently, X cannot be

Asplund ([20, Chapter 5] e.g.). We deduce from Theorem 2.10 that every Asplund space

is stably Gromov-compactifiable. ■

In the introduction we have seen that the horofunction extension of ℓ1 is not a topo-

logical compactification. In the following result we show that this property also holds for

all infinite dimensional L1-spaces. All these spaces are non-Gromov-compactifiable.

Proposition 2.12 (Examples of non-Gromov-compactifiable spaces). Let {(Xγ, ∥·∥γ)}γ∈Γ
be an infinite family of normed spaces. Denote by (X, ∥·∥) the normed space (

∑
γ Xγ)ℓ1,

i.e., the ℓ1-sum of the spaces (Xγ)γ

X :=

{
(xγ)γ ∈

∏
γ∈Γ

Xγ : ∥(xγ)γ∥ :=
∑
γ∈Γ

∥xγ∥γ <∞

}
.

Then, the horofunction extension X
h
is not a compactification of X. In particular, any

infinite dimensional L1(Ω, µ) space is not Gromov-compactifiable.

Proof. Let us verify that the space X does not verify the statement (c) of Theorem 2.5.

For each γ ∈ Γ, consider eγ ∈ Xγ be a unit vector. Let F ⊂ X be any finite dimensional

subspace. Since BF is compact, it easily follows that there is a sequence (σn)n ⊂ [0,∞)

and a sequence (γn)n ⊂ Γ such that limn→∞ σn = 0 and that

BF ⊂
∞∏
n=1

BXγn
(0, σn)×

∏
γ∈Γ\{γn: n∈N}

{0}.

For each n ∈ N, consider zn := eγn . Notice that for any n ∈ N and any w ∈ SF , we

have

∥zn − w∥ = ∥eγn − wγn∥+
∞∑
γ∈Γ
γ ̸=γn

∥wγ∥

≥ 2− 2∥wγn∥ ≥ 2− 2σn.
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Since above inequality holds true for any w ∈ SF , we have shown that

dH(SF , SX) ≥ 2− 2σn.

Since n can be taken arbitrarily large, the statement of (c) in Theorem 2.5 is not satisfied.

Let further (Ω,A, µ) be a measure space such that L1(Ω, µ) is infinite dimensional.

Then, there is an infinite countable partition of Ω, {Ωi}i ⊂ A, such that µ(Ωi) > 0 for all

i ∈ N. The conclusion follows from the following fact:

L1(Ω, µ) is isometrically isomorphic to

(
∞∑
i=1

L1(Ωi, µi)

)
ℓ1

,

where µi := µ|Ωi
. ■

Let us now extract the following criterium from Theorem 2.10.

• (ℓ1-criterium) If the horofunction extension X
h
of a Banach space X is not a

compactification, then X contains an isomorphic copy of ℓ1.

We shall now show that the converse of the above criterium does not hold, namely, there

are Gromov-compactifiable spaces that contain ℓ1. Notice that this shows in particular

that Gromov-compactifiability is not invariant under renormings.

To this end, let (Y, ∥·∥Y ) and (Z, ∥·∥Z) be two normed spaces. We denote by Y ⊕p Z

the p-sum of Y and Z, where p ∈ [1,+∞]. That is, the normed space X := Y ⊕p Z is the

direct sum of Y and Z equipped with the norm

∥x∥ = ∥y + z∥ := (∥y∥pY + ∥z∥pZ)
1
p , for all x ∈ X,

if p ∈ [1,+∞) and ∥x∥ := max { ∥y∥Y , ∥z∥Z}, if p = +∞.

Proposition 2.13. Let Y, Z be normed spaces. Then:

(i). For every p ∈ (1,+∞) the space X = Y ⊕p Z is Gromov-compactifiable.

(ii). The space X = Y ⊕1Z is Gromov-compactifiable if and only if both spaces Y and Z

are Gromov-compactifiable.

(iii). If Y is finite dimensional, then the space X = Y ⊕∞ Z is Gromov-compactifiable.

(iv). For every Γ ̸= ∅, the spaces ℓ∞(Γ) and c0(Γ) are Gromov-compactifiable.

Proof. (i). It follows directly from Theorem 2.7 and [18, Proposition 4.7].

(ii). It follows directly from Theorem 2.7 and [21, Proposition 3.7]

(iii). We now consider the case p = +∞ and Y is finite dimensional. We shall show that

the statement (c) of Theorem 2.5 holds for F = Y . As before, fix x ∈ SX and we write

x = xY + xZ . Therefore, ∥x∥ = max{∥xY ∥, ∥xZ∥}. If xY = 0, set y ∈ Y as any unit

vector. If xY ̸= 0, set y = xY /∥xY ∥. Observe that, in any case, we have that

∥x− y∥ = max{∥xY − y∥, ∥xZ∥} = max{1− ∥xY ∥, ∥xZ∥} ≤ 1.
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Since x is arbitrary, we deduce that dH(SF , SX) = 1.

(iv). If Γ is a finite set, then ℓ∞(Γ) is finite dimensional. Then, Proposition 1.6 implies

that it is Gromov-compactifiable. On the other hand, if Γ is an infinite set, it follows

easily that ℓ∞(Γ) and c0(Γ) are isometrically isomorphic to R⊕∞ ℓ∞(Γ) and R⊕∞ c0(Γ)

respectively, and consequently (iii) applies. ■

Notice that the above result is sharp in the following sense: the horofunction extension

X
h
of the space X := ℓ1 ⊕∞ ℓ1 is not a compactification of X. Indeed, we consider

the (unbounded) sequence zn = (nen, nen) ∈ X and proceed in a similar way as in

Example 1.4 to show that the corresponding sequence {hzn(·)}n converges pointwise to

h0(·). The details of this example are left to the reader.

Notwithstanding, Proposition 2.13 yields the following striking result:

Corollary 2.14 (Gromov-compactifiability after renorming). For every normed space

(X, ∥·∥) there exists an equivalent norm |||·||| on X such that, the horofunction extension

(X, |||·|||)
h
is a compactification of (X, |||·|||).

Proof. Let (X, ∥·∥) be a normed space. If dim(X) < ∞, the result follows from Propo-

sition 1.6. If dim(X) = ∞, let Y be a closed hyperplane of X and x ∈ X \ Y . Then,

X = Y ⊕Rx. It is well known that X is linearly isomorphic to Y ⊕2Rx. Proposition 2.13

finishes the proof. ■

Notice that the above corollary applies in particular to ℓ1. Similarly to any normed space,

this highly pathological space becomes Gromov-compactifiable under suitable renormings.

Before we proceed, let us recall the following terminology:

Definition 2.15. A property (P) on Banach spaces is called a 3-space property (in short,

3-SP) if, for any Banach space X and any closed subspace Y ⊂ X the following holds:

If two of the spaces X, Y and X/Y satisfy (P), then the third space also satisfies (P).

Corollary 2.16. The property of being Gromov-compactifiable is not stable neither under

bi-Lipschitz homeomorphism nor subsets and it is not a 3-SP.

Proof. The first assertion follows directly from Corollary 2.14. For the second assertion,

it suffices to consider the space X = R⊕2 ℓ
1 (so that ℓ1 ⊂ X) and apply Proposition 2.13.

Finally, to show that the property of being Gromov-compactifiable is not a 3-SP, consider

Y = R⊕2 {0}. Then X/Y = {0} ⊕2 ℓ
1. Therefore, X and Y are Gromov-compactifiable,

but the space X/Y , being isometric to ℓ1, is not. ■

We shall now show that condition Theorem 2.10 (c) is sharp, in the sense that consid-

ering only subspaces of dimension 1 (rather than general finite dimensional subspaces) is

not enough to guarantee the validity of the theorem.
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Example 2.17 (Dimension of F in Theorem 2.5 (c)). Consider the space X = ℓ1 ⊕2 ℓ
1.

Thanks to Proposition 2.13, X is Gromov-compactifiable, that is, the horofunction ex-

tension X
h
is a compactification of X (and consequently, (c) of Theorem 2.5 holds).

We shall show that, for every one-dimensional subspace F ⊂ X we have

dH(SF , SX) = 2,

yielding that the subspace F given by Theorem 2.5 (c) satisfies in this case dimF ≥ 2.

Indeed, let w ∈ X be a unit vector and set F = Rw. Let w1 ∈ ℓ1×{0}N and w2 ∈ {0}N×ℓ1
be such that w = w1 + w2. Then,

1 = ∥w∥2 = ∥w1∥2 + ∥w2∥2.

For sake of brevity, set a := ∥w1∥ and b := ∥w2∥. Denote by (en) and (fn) the canonical

bases of ℓ1 for the first and second coordinate of X respectively. Then, for any n ∈ N,
xn := aen + bfn ∈ X is a unit vector. Recalling that SF = {w,−w}, we compute

∥xn ± w∥2 = ∥aen ± w1∥2 + ∥bfn ± w2∥2

=

|a± w1
n|+

∞∑
k=0
k ̸=n

|w1
k|


2

+

|b± w2
n|+

∞∑
k=0
k ̸=n

|w2
k|


2

= (|a± w1
n| − |w1

n|+ a)2 + (|b± w2
n| − |w2

n|+ b)2

Taking supremum on n ∈ N, we deduce

sup
n∈N

min
{
∥xn − w∥2, ∥xn + w∥2

}
≥ (2a)2 + (2b)2 = 4

and we conclude that dH(SF , SX) = 2.

2.5. Applications in metric spaces. Let us start with the following result.

Corollary 2.18 (Isometric embedding). Every metric space (X, d) can be isometrically

embedded in a Gromov-compactifiable space.

Proof. It is well-known ([19, Theorem 1.6]) that every metric space (X, d) can be iso-

metrically embedded into the Banach space ℓ∞(X) of all bounded real functions on X

(equipped with the sup-norm) by means of the so-called Kuratowski-embedding. Namely,

fixing a base point x0 ∈ X, the map x 7→ θx(·), x ∈ X, where

θx ≡ {d(x, z)− d(x0, z)}z∈X ∈ ℓ∞(X)

is an isometry from X to ℓ∞(X). By Proposition 2.13 (iv) we deduce that ℓ∞(X) is

Gromov-compactifiable and the conclusion follows. ■
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We shall now discuss two classical paradigms of canonical embeddings of a metric

space X. The first one is the embedding to the so-called Lipschitz-free space Fx0(X)

(also known as Arens-Eells space or Transportation cost space). Let us provide a quick

construction of Fx0(X). (For a more detailed construction and classical properties we refer

to [14].) Fix x0 ∈ X a base point and consider the Banach space Lipx0
(X) of real-valued

Lipschitz functions that vanish at x0, equipped with the norm of the Lipschitz constant.

Let δ : X → Lipx0
(X)∗ be the evaluation map defined by

⟨δ(x), f⟩ = f(x), for all x ∈ X, f ∈ Lipx0
.

It is known that δ is a (non-linear) isometry and that

(2.2) ∥δ(x)∥ = d(x, x0), for all x ∈ X.

The Lipschitz-free space Fx0(X) is then defined as the closed linear span of δ(X) in

Lip0(X)∗ (equipped with the restriction of the underlying norm), that is

Fx0(X) := span {δ(x) : x ∈ X }.

It turns out that Fx0(X)∗ = Lipx0
(X). Furthermore, the isometric structure of Fx0(X)

is independent of the chosen base point x0. This space is usually denoted by F(X) :=

Fx0(X), and its norm by ∥ · ∥F . In this framework, Theorem 2.7 (characterization of

Gromov-compactifiability via non-octahedrality), clearly relates to the complete study

about octahedrality in Lipschitz-free spaces that has been recently carried out by Procházka

and Rueda-Zoca in [21].

The second paradigm is theWasserstein spaces, which are classes of (probability) spaces

that are associated with a given metric space X and relate to the Optimal Transport

theory, see [10] for details. In particular, the 1-Wasserstein space (P 1(X),W1) of X,

which consists of the Radon probability measures on X with finite first moment, offers

another canonical isometrical embedding. The 1-Wasserstein distance of two elements

(measures) µ, ν ∈ P 1(X) is given by the formula (see [7, Theorem 4.1])

W1(µ, ν) = sup

{∫
X

f(x)dµ(x)−
∫
X

f(x)dν(x) : f ∈ Lip(X), Lip(f) ≤ 1

}
.

In view of [7, Theorem 6.1], the set of probabilities with finite support (that is, convex

combination of Dirac measures) is dense in P 1(X). Therefore, P 1(X) is isometrically

isomorphic to convF(X)(δ(X)) ⊂ F(X).

We are now ready to state the following result, which asserts that (in contrast to

Corollary 2.16) the property of being Gromov-compactifiable is inherited to X from either

its Lipschitz-free space F(X) or its 1-Wasserstein space P 1(X). In what follows, allowing

a slight abuse of notation, for every x ∈ X, we shall denote by δ(x) both the element of

(the vector space) F(X) and the Dirac measure in P 1(X).
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Proposition 2.19. Let (X, d) be a metric space. Then

(i). X is Gromov-compactifiable when F(X) is Gromov-compactifiable.

(ii). X is Gromov-compactifiable when P 1(X) is Gromov-compactifiable.

Proof. If X is a finite metric space, then F(X) is finite dimensional and P 1(X) is a

polytope. In this case, the result follows easily from Proposition 1.6.

Let us now assume that the cardinality of X is infinite and, towards a contradiction,

that X is not Gromov-compactifiable. Then by Theorem 2.1 (b), there exist x0 ∈ X and

r > 0 such that for any compact set K ⊂ X and any η > 0, there exists z := zK,η ∈
X \B(x0, r) such that

d(z, w) > d(z, x0) + d(x0, w)− η, for all w ∈ K.

In particular, for 0 < η < r and every finite set A ⊂ X, we set

(2.3) z := zA,η.

Moreover, for any choice (λw)w∈A, we set

mA :=
∑
w∈A

λw δ(w)
(
∈ span(δ(X)) ⊂ Fx0(X).

)
Claim. There exists a 1-Lipschitz function f : X → R such that

(2.4) f(x0) = 0, ⟨mA, f⟩ = −∥mA∥F and f(z) = d(z, x0)− η.

Proof of the claim. Since Fx0(X)∗ = Lipx0
(X), there exists a 1-Lipschitz function

g : X → R with g(x0) = 0 such that ⟨mA, g⟩ = −∥mA∥F . Denote by g1 the restriction of

g to A ∪ {x0} ⊂ X and consider the extension of g1 to A ∪ {x0, z} as follows:

g2 : A ∪ {x0, z} → R with g2|A∪{x0} ≡ g1 and g2(z) = d(x0, z)− η

It is easy to check that g2 is 1-Lipschitz, since for every w ∈ A we have:

|g2(z)− g2(w)| ≤ |g2(z)|+ |g2(w)| ≤ d(x0, z)− η + d(w, x0) < d(z, w).

We define f as any McShane extension of g2 to X and the claim is proved.

Thanks to [7, Theorem 4.1], for the particular case where
∑

w∈A λw = 1 and λw ≥ 0, we

deduce

(2.5) ⟨mA, f⟩ = −W1 (δ(x0),mA) and f(z) = W1(δ(x0), δ(z))− η.

(i). We shall use as base point the above point x0 ∈ X and prove that the Lipschitz-

free space Fx0(X) is not Gromov-compactifiable. Indeed, we are going to show that

condition (c) of Theorem 2.5 fails. To this end, let F be a finite dimensional subspace of

Fx0(X) and 0 < η < r. Let further (µk)
n
k=1 be a finite η-net of the (compact) unit sphere
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SF := F ∩ SFx0 (X) of F . By density of the subspace span (δ(X)) in Fx0(X), there exists

(mk)
n
k=1 ⊂ span(δ(X)), with ∥mk∥F = 1, such that

∥µk −mk∥F < η, for k ∈ {1, ..., n}.

For every k ∈ {1, ..., n}, take (xk,i)
nk
i=1 ⊂ X and (λk,i)

nk
i=1 ⊂ R such that

mk :=

nk∑
i=1

λk,iδ(xk,i).

Set Ak :=
⋃nk

i=1{xk,i} and A =
⋃k

k=1Ak. Take zA := zA,η given in (2.3) and let fk be a

1-Lipschitz function that satisfies (2.4), for the vector mk and the point zA.

Let µ ∈ SF . Then there is k ≥ 1 such that ∥µ−µk∥F ≤ η. Considering the correspond-

ing fk and recalling by (2.2) that

∥δ(zA)∥F = d(zA, x0) > r and ⟨fk,mk⟩ = −∥mk∥F = −1

we deduce:

∥∥∥ δ(zA)

d(x0, zA)︸ ︷︷ ︸
SFx0 (X)

− µ︸︷︷︸
SF

∥∥∥
F

≥
∥∥∥ δ(zA)

d(x0, zA)
− µk

∥∥∥
F
− η ≥

∥∥∥ δ(zA)

d(x0, zA)
−mk

∥∥∥
F
− 2η

≥ ⟨fk,
δ(zA)

d(x0, zA)
−mk⟩ − 2η =

f(zA)

d(x0, zA)
+ ⟨fk,−mk︸ ︷︷ ︸

=1

⟩ − 2η

=

(
1− η

d(x0, zA)

)
+ 1− 2η ≥ 2− η

r
− 2η.

Therefore, we obtain

dH(SF , SF(X)) ≥ d

(
δ(zA)

d(x0, zA)
, SF

)
:= inf

µ∈SF

∥∥∥ δ(zA)

d(x0, zA)
− µ

∥∥∥
F

≥ 2− η

(
2 +

1

r

)
.

Since η is arbitrary, we eventually conclude that dH(SF , SF(X)) = 2.

(ii). We shall show that the 1-Wasserstein space (P 1(X),W ) is not Gromov-compactifiable.

Following the same pattern of proof as in (i), we shall show that condition (b) of Theo-

rem 2.1 fails for P 1(X) at δ(x0) and r > 0.

To this end, let 0 < η < r and K ⊂ P 1(X) be a compact set. Let (mk)
n
k=1 ∈ conv(δ(X))

be such that

min
k≥1

W1(µ,mk) ≤ η, for any µ ∈ K.

Abusing slightly notation, we still write mk =
∑nk

i=1 λk,iδ(xk,i) and set Ak =
⋃nk

i=1{xk,i}
and A =

⋃n
k=1Ak (as in the above proof). Consider zA := zA,η as in (2.3). For any µ ∈ K,
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fixing k such that W1(µ,mk) < η and considering fk satisfying (2.5) with respect to mk

and zA, we obtain

W1(δ(zA), µ) ≥ W1(δ(zA),mk)− η ≥ ⟨fk, δ(zA)−mk⟩ − η

=︸︷︷︸
(2.5)

(
W 1(δ(zA), δ(x0))− η

)
+W 1(δ(x0),mk)− η

≥ W 1(δ(zA), δ(x0)) +W 1(δ(x0), µ)− 3η.

Since η is arbitrary, statement (b) of Theorem 2.1 cannot hold for P 1(X) at δ(x0).

The proof is complete. ■

In what follows, we study special classes of metric spaces that allow to simplify the state-

ment of Theorem 2.1 (necessary and sufficient condition for Gromov-compactifiability).

Let us start with the following consequence for proper metric spaces, which improves the

sufficient condition given in [11, Lemma 2.2].

Corollary 2.20 (Simplified characterization for proper spaces). Let (X, d) be a proper

metric space. The following are equivalent:

(a) The horofunction extension X
h
is a compactification of X.

(b′) For every point x ∈ X, there exist constants η > 0 and R > 0 such that, for each

z ∈ X \B(x,R), there exists some w ∈ B(x,R) such that

d(w, z) ≤ d(w, x) + d(x, z)− η.

Proof. First note that condition (b′) above implies condition (b) of Theorem 2.1. Indeed,

if for every x ∈ X we have constants η > 0 and R > 0 satisfying (b′) it is clear that

condition (b) is fulfilled if for each r > 0 we choose ηr := η and Kr := B(x,R).

Conversely, suppose now that condition (b′) fails. Then there exists x0 ∈ X such that,

if for each n ∈ N we choose η = 1
n
and R = n, there exists zn ∈ X \ B(x0, n) so that, for

every w ∈ B(x0, n)

d(w, zn) > d(w, x0) + d(x0, zn)−
1

n
.

Choose x0 to be the base point for the definition of the map h : X → RX . Then it is

clear that the sequence (zn) does not converge to x0, but we are going to see that (hzn)

converges pointwise to hx0 . Indeed, given w ∈ X, there is some n0 such that w ∈ B(x0, n0)

and then, for all n ≥ n0:

0 ≤ hx0(w)− hzn(w) = d(w, x0)− d(w, zn) + d(x0, zn) <
1

n
.

This shows that h−1 is not continuous at hx0 . ■

We now obtain some sufficient conditions in the setting of locally compact metric spaces.

As in the previous case, the first one is a direct consequence of Theorem 2.1.
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Corollary 2.21 (Locally compact spaces). Let (X, d) be a locally compact metric space.

Suppose that for every point x ∈ X, there exist constants η > 0 and R > 0 such that the

ball B(x,R) is compact, and for each z ∈ X \ B(x,R), there exists some w ∈ B(x,R)

such that

d(w, z) ≤ d(w, x) + d(x, z)− η.

Then the horofunction extension X
h
is a compactification of X.

The following corollary is a generalization of Proposition 1.6.

Corollary 2.22. Let (X, d) be a locally compact metric space such that every ball in X

is connected. Then the horofunction extension X
h
is a compactification of X.

Proof. It suffices to show that the condition of the previous Theorem is fulfilled. Given

x ∈ X, we can choose any R > 0 such that B(x,R) is compact, and η = R
2
. Indeed, for

each z ∈ X \ B(x,R), set R′ = d(x, z) > R and consider the closed ball B(z,R′). Since

this ball is connected, the set

F :=

{
y ∈ B(z, R′) : d(y, x) =

R

2

}
is nonempty. Choosing w ∈ F we obtain that d(w, z) ≤ R′ and

d(x, z) + d(w, x)− d(w, z) ≥ R′ +
R

2
−R′ =

R

2
.

The proof is complete. ■

In the previous result, local compactness is an important assumption. Indeed, in Re-

mark 1.5 we saw that for the space X = ℓ1(N), the horofunction extension X
h
is not a

compactification of X, although ℓ1(N) is a geodesic space.

In fact, without local compactness, we cannot ensure a positive result even for metric

trees. Recall that a metric space (X, d) is said to be a metric tree or R-tree if it satisfies

the following two conditions:

(i). for every x, y ∈ X, there exists a unique geodesic segment [x, y] joining them, and

(ii). If [y, x] ∩ [x, z] = {x} then [y, x] ∪ [x, z] = [y, z].

Example 2.23 (Non-locally compact metric tree). In the Banach space ℓ1(N) consider

the union of segments

X :=
∞⋃
n=1

[0, nen].

The space X, endowed with the metric inherited from ℓ1(N), is a metric tree. Evoking

again the claim of Example 1.4 we deduce that X
h
is not a compactification of X.
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Let us finish this section with the following application to ultrametric spaces. Recall

that a metric space (X, d) is called ultrametric if, for every x, y, z ∈ X,

d(x, z) ≤ max{d(x, y), d(y, z)}.

Corollary 2.24 (Ultrametric spaces are Gromov-compactifiable). Let (X, d) be an ultra-

metric space. Then the horofunction extension X
h
is a compactification of X.

Proof. Let us check that Theorem 2.1 (b) holds true. Let x ∈ X and r > 0. Assume that

X \ B(x, r) ̸= ∅ and set K = {w}, where d(x,w) > r. We show that the choice ηr = r

satisfies (b) of Theorem 2.1. Indeed, for any z ∈ X \B(x, r), we have that

d(z, w) ≤ max{d(z, x), d(x,w)} ≤ d(z, x) + d(x,w)− r.

The proof is complete. ■

3. Alternative construction

3.1. Canonical compactifications. We recall the classical construction of extensions of

a metric (or topological) space X by using a family of continuous bounded functions on X

(see, e.g. Chandler [4]). In our case, let (X, d) be a metric space, and let L be a family of

continuous bounded real functions on X, which separates the points of X. Consider the

injection

eL : X → RL

defined by

eL(z) := (f(z))f∈L .

The the associated extension HL(X) of X is defined as the closure of eL(X) in RL, when

this space is endowed with the product topology. It is easily seen that eL is a continuous

injection and HL(X) is compact. Note that

eL(X) ⊂
∏
f∈L

[ inf
z∈X

f(z), sup
z∈X

f(z)]

Furthermore, it is well-known that eL is a topological embedding if, and only if, the

family L weakly separates points and closed sets of X. This means (see, e.g. [5]) that for

every z0 ∈ X and every closed set F in X with z0 /∈ F , there exist f1, . . . , fm ∈ L such

that 0 /∈ g(F ), where g : X → R is defined by

g(z) := max
1≤k≤m

|fk(z)− fk(z0)|

In this case, HL(X) is a compactification of X and, for each f ∈ L, the natural projec-

tion πf provides a continuous extension of f to HL(X). In fact, HL(X) can be character-

ized as the smallest compactification of X where every function in L can be continuously

extended (see [4]). Here, we consider the usual ordering in the family of compactifications

of X. That is, for two compactifications α1X and α2X of X, we say that α1X ≤ α2X

whenever there exists a continuous map φ : α2X → α1X leaving X pointwise fixed. We
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also say that α1X and α2X are equivalent if α1X ≤ α2X and α2X ≤ α1X. This implies

the existence of a homeomorphism φ : α1X → α2X leaving X pointwise fixed.

Now fix a base point x0 ∈ X and, for each x ∈ X, consider the function θx : X → R
defined as

θx(z) := d(x, z)− d(x0, z).

Note that θx is a bounded 2-Lipschitz function on X and, for every x, z ∈ X:

θx(z) = hz(x).

Then we have the following.

Proposition 3.1. Let (X, d) be a metric space. Then

(i). The horofunction extension X
h
coincides with the extension HLθ

(X), for the family

Lθ := {θx : x ∈ X}.
(ii). The horofunction extension X

h
is a compactification of X if, and only if, the

family Lθ := {θx : x ∈ X} weakly separates points and closed sets of X.

Proof. Note that, for every z ∈ X we can identify:

eLθ
(z) = (θx(z))x∈X = (hz(x))x∈X = hz.

From this, part (i) follows at once. On the other hand, as we have mentioned, eL is a

topological embedding if, and only if, the family L weakly separates points and closed

sets of X, so (ii) follows. ■

3.2. The Rieffel construction. In the case that (X, d) is a locally compact metric space,

Rieffel defines the metric compactification X
d
of X (see Definition 4.1. in [22]) as the

maximal ideal space of the uniformly closed algebra of (bounded) functions onX generated

by the union of the family Lθ, the constant functions, and the family C∞(X) of all

continuous functions onX vanishing at infinity. It is clear that the metric compactification

can also be obtained following our previous scheme, and in fact X
d
= HLd

(X), where

Ld := Lθ ∪ C∞(X).

Note that X
d
is always a compactification of X, so in general it can be different from X

h

(see Example 1.4). Nevertheless, we always have the natural projection map

π : X
d
= HLd

(X) → X
h ⊂ HLθ

(X)

which is continuous, closed and surjective, and satisfies π(z) = hz for every z ∈ X. If X
h

is a compactification of X, this gives that X
h ≤ X

d
with the usual ordering. Furthermore,

in this case each function in Ld extends continuously to X
h
, so from the minimality of

HLd
(X) with respect to this property, we obtain that X

d ≤ X
h
. Summarizing, we obtain:
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Proposition 3.2. Let (X, d) be a locally compact metric space.

(i). The horofunction extension X
h
is a quotient of the metric compactification X

d
.

(ii). If the horofunction extension X
h
is a compactification of X, then X

d
= X

h
.

As an illustrative example, consider X to be the ℓ1-ray defined in Example 1.4. This is a

locally compact metric space, for which X
d
is the one-point compactification of X, that

is, X
d
= [0,+∞], whereas X

h
= S1, and the natural quotient map

π : X
d
= [0,+∞] → X

h
= S1

identifies 0 with the point at infinity.

Open question. It would be interesting to know if every non-Gromov-compactifiable metric

space (X, d) admits a minimal compactification with the property that every function in

the family Lθ can be continuously extended there. If (X, d) is locally compact, the answer

is positive, since the metric compactification X
d
considered above has this property.
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HOROFUNCTION EXTENSION AND METRIC COMPACTIFICATIONS 29

Universidad Complutense de Madrid, E-28040, Spain

E-mail: jaramil@mat.ucm.es

Research of M. I. Garrido and J. A. Jaramillo partially supported by Ministerio de Ciencia,

Innovación y Universidades (Spain) grant PID2022-138758NB-I00.


	1. Introduction and preliminary results
	1.1. Original definition of the horofunction extension
	1.2. Construction using 1-Lipschitz functions
	1.3. Injection versus embedding

	2. Main results
	2.1. A general characterization for metric spaces
	2.2. A general characterization for normed spaces
	2.3. Gromov-compactifiability under renormings
	2.4. Applications in Banach spaces
	2.5. Applications in metric spaces

	3. Alternative construction
	3.1. Canonical compactifications
	3.2. The Rieffel construction

	References

