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Abstract. We construct, for any n,m ∈ N \ {0}, a differentiable locally Lipschitz function
f : Rn → Rm which is C1 on the complement of an H1-null set E ⊂ Rn and has the property
that the range of its limiting Jacobian on E contains the family of all nonempty compact connected
sets of (m×n)-matrices. As a consequence, the Clarke Jacobian Jcf is surjective, that is, its range
contains every nonempty compact convex subset of (m×n)-matrices. This reveals a significant differ-
ence between differentiable functions and C1-functions, since for a C1-function the Clarke Jacobian
is always a singleton. As a by-product, we also obtain examples of C1-smooth functions from Rn to
Rm (for any n,m ∈ N\{0}) with surjective derivative, that is, Im(Df) = Rm×n.
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1. Main results and state-of-the-art

A function f : Rn → Rm is called locally Lipschitz if for every x̄ ∈ Rn, there exist δ > 0 and
L > 0 such that

(1) ∥f(x)− f(y)∥ ≤ L ∥x− y∥, for all x, y ∈ B(x̄, δ),

where ∥ · ∥ denotes both norms in Rn and Rm and B(x̄, δ) stands for the open ball centered at x̄
with radius δ > 0. If (1) holds for all x, y ∈ Rn then we say that f is Lipschitz and define its Lipshitz
constant Lip(f) as the infimum of L > 0 for which the above inequality holds true.

For any differentiable locally Lipschitz function f : Rn → Rm, the limiting Jacobian JLf(x) of f
at x ∈ Rn can be defined as follows:

(2) JLf(x) =

{
Q ∈ Rm×n : ∃{xk}k ⊂ Rn converging to x, Q = lim

k→+∞
Df(xk)

}
.
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This gives rise to a multivalued operator JLf : Rn ⇒ Rm×n which associates to every x ∈ Rn a
compact subset JLf(x) of Rm×n with Df(x) ∈ JLf(x). Moreover, JLf(x) = {Df(x)} if and only if
the derivative mapping Df : Rn → Rm×n is continuous at x. Notice that

gph (JLf) = gph (Df),

where gph (Df) denotes the graph of the derivative and gph (JLf) = {(x,Q) : Q ∈ JLf(x)} stands
for the graph of the multivalued map JLf. The size of JLf(x) reflects, in some sense, the degree of
discontinuity of the derivative of f.

In this manuscript we construct a differentiable, locally Lipschitz function f : Rn → Rm that is
able to represent every nonempty, compact, connected subset of Rm×n as limiting Jacobian at some
point. More precisely, denoting by H1 the one-dimensional Hausdorff measure and by K(Rm×n) the
set of nonempty compact connected subsets of Rm×n we establish the following result.

Theorem 1.1 (main result). For any n,m ∈ N\{0}, there exist a differentiable locally Lipschitz
function f : Rn → Rm and a subset E of Rn with H1(E) = 0, such that

(3) JLf(E) := {JLf(x) : x ∈ E} = K(Rm×n) and f ∈ C1(Rn⧹E).

The above result has a straightforward consequence for the Clarke Jacobian Jcf . We recall that
this latter is defined as the convex envelope of the limiting Jacobian, that is,

Jcf(x) := conv (JLf(x)) , for every x ∈ Rn.

Denoting by Kconv(Rm×n) the set of nonempty compact convex subsets of Rm×n we obviously have
Jcf(x) ∈ Kconv(Rm×n) and we deduce easily from Theorem 1.1 that Jcf actually takes all of its
possible values.

Corollary 1.2 (surjective Clarke Jacobian). Let f : Rn → Rm be given by Theorem 1.1. Then the
Clarke Jacobian map Jcf(x) : Rn → Kconv(Rm×n) is surjective. In particular,

(4) Jcf(E) := {Jcf(x) : x ∈ E} = Kconv(Rm×n).

Surjectivity can also be asserted for the limiting Jacobian map JLf in case m = 1. Indeed, the
derivative Df of a differentiable function f : Rn → R satisfies a Darboux-type property (c.f. [9]):

– for every convex compact subset B of Rn with nonempty interior,

the set Df(B) := {Df(x′) : x′ ∈ B} is connected.

Therefore, if the function f is differentiable and locally Lipschitz, setting Bk := B(x, 1/k) (the closed

ball of radius 1/k and center x) for every k ≥ 1, the set Df(Bk) is nonempty compact connected

in Rn ≡ R1×n, that is, Df(Bk) ∈ K(Rn) and the same is true for the limiting Jabobian JLf(x)
—also called limiting subdifferential and denoted ∂Lf(x)— since it can be written as intersection
of nested compact connected sets, that is,

JLf(x) ≡ ∂Lf(x) =
⋂
k≥1

Df(Bk) ∈ K(Rn).

Thus, for m = 1, Theorem 1.1 asserts that the limiting Jacobian (subdifferential) ∂Lf is surjective.
In particular,

(5) ∂Lf(E) = ∂Lf(Rn) = K(Rn), where H1(E) = 0 and f ∈ C1(Rn⧹E).
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Remark 1.3. Notice that in Theorem 1.1 no surjectivity assertion can be made for the limiting
Jacobian if m ≥ 2, since in this case JLf may also take disconnected values. To see this, consider
the (differentiable Lipschitz) function g : R → R2 defined by

t ∈ R 7→ g(t) :=

{(
t2 sin(t−1), t2 cos(t−1)

)
if t ̸= 0,

(0, 0) if t = 0.

and notice that JLg(0) = {Q ∈ R2×1 : Q2
1 +Q2

2 = 1 or Q = (0, 0)}, which is not connected.

Recall that for a C1-function f we have Jcf(x) = JLf(x) = {Df(x)}, for all x ∈ Rn. As a
by-product of our approach we obtain the following surjectivity result.

Theorem 1.4 (surjectivity of the derivative of a C1-function). For any n,m ∈ N\{0}, there exists
a C1-smooth function f : Rn → Rm with surjective derivative map, that is,

Im(Df) = Rm×n.

State-of-the-art. It has been recently shown that given any nonempty compact convex (respec-
tively, connected) subset K of Rm×n, there exists a Lipschitz function f : Rn → Rm (depending
on K) such that Jcf(0) = K (respectively, JLf(0) = K), see [2, Theorem 1.1] (respectively, [1,
Theorem 1]). Moreover, the function can be taken C∞ on Rn⧹{0} and differentiable at 0. In ad-
dition, exploring symmetries in the construction, the authors of [1, 2] were able to ensure that
Jc(f |P)(0) = K|P (respectively, JL(f |P)(0) = K|P) for every subspace P of Rn.

In this setting, Corollary 1.2 (respectively, Theorem 1.1) partially improve the aforementioned
results, in the sense that there exists a common differentiable function f which represents all sub-
sets K belonging to the family of interest: nonempty convex (respectively connected) and compact.
These sets are now recovered as Clarke (respectively, limiting) Jacobians at some point of an H1-
null subset E of Rn. On the other hand, we can only ensure that f is C1 on the complement of E
(instead of C∞) and these representations are no longer stable when intersecting with a subspace.

For the real-valued case (that is, m = 1) a locally Lipschitz, differentiable function f : Rn → R
has been constructed with the property that every compact connected (respectively, convex) subset
of Rn with nonempty interior belongs to the range of the limiting (respectively, Clarke) subdif-
ferential ([5, Theorem 3.16]). The restriction of nonempty interior was an intrinsic limitation of
the construction given in [5, Theorem 3.16] (only sets that had nonempty intersection with a pre-
determined countable dense set could be recovered). In view of Theorem 1.1, this assumption can
now be omitted and every nonempty compact connected set can be recovered. In addition, the
result holds for every m ≥ 1, see (3)–(4).

Our approach borrows from [5] the idea of coding the set of interest, which is now the set
K(BRm×n) := {C ∈ K(Rm×n) : C ⊂ BRm×n}, as a continuous surjective image of the Cantor set ∆.
This being said, our current proof differs significantly from the one in [5]. First, the aforementioned
coding is now carried out in a particular way that guarantees the existence of a continuous selection.
Moreover, we use a specific way to approximate and eventually represent compact connected subsets
that contain 0. Finally, the construction uses a version of the Whitney extension theorem, which
now replaces the explicit construction given in [5],

Remark 1.5 (alert on the definition). The limiting Jacobian was mainly coined and defined for
nonsmooth locally Lipschitz maps, which is particularly relevant in Optimization and in Control
theory, see [4, Chapter 2]. In this case the elements of the set JLf(x) are used as substitutes for
the derivative, whenever this latter does not exist (this only happens in a zero-measured set, due
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to Rademacher theorem). The original definition of JLf(x) in the nonsmooth case differs slightly
from the one given in (2). This latter is in fact a simplified equivalent definition valid only for
differentiable locally Lipschitz functions.

2. Notation and preliminary results

Notation: Rn and Rm are hereby equipped with Euclidean norms denoted indistinctively by ∥ · ∥.
The space of linear operators from Rn to Rm is denoted by Rm×n and it is equipped with the
operator norm: for Q ∈ Rm×n,

∥Q∥ := max{∥Qx∥ : ∥x∥ ≤ 1}.
Note that, to simplify the notation, we use the same symbol ∥·∥ for the norms of Rn, Rm and Rm×n.
We sometimes use the notation ⟨Q, x⟩ to refer to the matrix product Qx between Q ∈ Rm×n and
x ∈ Rn. Given a ∈ R, we denote by (a, 0n−1) the vector (a, 0, . . . , 0) ∈ Rn. For instance, the first
canonical vector e1 ∈ Rn is also denoted by (1, 0n−1). Vectors in Rn and Rm will be always denoted
with lowercase letters and matrices in Rm×n with capital letters. Finally, we denote by BRn(x, r)
(respectively, BRm×n(x, r)) the open ball of Rn (respectively, of Rm×n) centered at x with radius
r > 0. If x = 0, we then simplify notation and write rBRn ≡ BRn(0, r) and rBRm×n ≡ BRm×n(0, r).
In particular, BRm×n stands for the closed unit ball of Rm×n.

Given a nonempty subset B in Rm×n, we denote by K(B) the family of all nonempty compact
connected subsets of B, that is,

(6) K(B) := {K ⊂ B : K is nonempty, compact and connected}
and endow the above set with the Hausdorff distance, that is,

(7) DH(K1,K2) := max

{
sup
x∈K1

d(x,K2), sup
x∈K2

d(x,K1)

}
, for K1,K2 ∈ K(B),

where d(x,K) := inf {∥x− a∥ : a ∈ K} for every K ⊂ Rn. It is well-known that if B is compact,
the metric space (K(B), DH) is compact, therefore, there exists a continuous surjective map from
the Cantor set ∆ to K(B) ([8, Theorem 4.18] e.g.). We shall also consider two particular closed
subspaces of K(B), namely,

(8) K0(B) := {K ∈ K(B) : 0 ∈ K} and Kconv(B) = {K ∈ K(B) : K convex}.
Therefore, both K0(B) and Kconv(B) are compact metric spaces. In addition, (Kconv(B), DH) is
also a geodesic space when B is convex. (We refer to [5] for more details.)

In what follows, our objective is to establish the following.

Theorem 2.1. Let n,m ∈ N\{0}. There are a differentiable Lipschitz function Φ : Rn → Rm with
bounded support and a subset E of Rn with H1(E) = 0, such that Φ ∈ C1(Rn⧹E) and

(9) K(BRm×n) = JLΦ(E) ⊂ JLΦ(Rn) ⊂ K(Rm×n).

That is, for any K ∈ K(BRm×n), there exists xK ∈ E satisfying JLΦ(xK) = K.

Before we proceed, we observe that Theorem 1.1 is a simple consequence of the above result.

Proof of Theorem 1.1 (assuming Theorem 2.1).

Let Φ : Rn → Rm be the function given by Theorem 2.1 and denote by suppΦ its support. By
assumption, suppΦ ⊂ rBRn for some r > 0. Let k ≥ 0. Then the function

Φk,x̄(x) := kΦ(x− x̄), x ∈ Rn,
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satisfies K(kBRm×n) ⊂ JLΦk,x̄(Rn) ⊂ K(Rm×n) and suppΦk,x̄ ⊂ BRn(x̄, r).
Denoting by e1 = (1, 0n−1) ∈ Rn the first canonical vector of Rn, we set x̄k := 3kre1 and Φk ≡ Φk,x̄k

for k ∈ N. Then
suppΦk1 ∩ suppΦk2 = ∅, for k1 ̸= k2

and we can easily check that the function

f(x) =
∞∑
k=1

Φk(x) =
∞∑
k=1

kΦ(x− 3kre1)

satisfies the conclusion of Theorem 1.1. □

Let us first recall a version of Whitney extension theorem for vector-valued functions that we are
going to use. It is a special case of [6, Theorem 3.1.14].

Proposition 2.2 (Whitney extension for vector-valued functions). Let Σ ⊂ Rn be a nonempty
compact set and let α : Σ → Rm and β : Σ → Rm×n be functions that define a family of 1-jets
{Pσ}σ∈Σ (polynomials from Rn to Rm of degree one) as follows:

(10) Pσ(x) = α(σ) + ⟨β(σ), x− σ⟩, for all x ∈ Rn.

For δ > 0 consider the quantities:

(11) ρ0(δ) := sup
σ1,σ2∈Σ

{
||Pσ2(σ1)− Pσ1(σ1)||

||σ1 − σ2||
: 0 < ||σ1 − σ2|| ≤ δ

}
and

(12) ρ1(δ) := sup
σ1,σ2∈Σ

{||DPσ2(σ1)−DPσ1(σ1)|| : 0 < ||σ1 − σ2|| ≤ δ}

and assume that

lim
δ→0

ρ0(δ) = lim
δ→0

ρ1(δ) = 0.

Then there exists a C1-smooth function g : Rn → Rm such that g|Σ = α and Dg|Σ = β (that is, the
1-jet Pσ given in (10) is the first-order Taylor polynomial of g at σ).

Proof. It follows from [6, Theorem 3.1.14] for the special case where A = Σ is compact, Y = Rm

and k = 1. □

3. Proof of the main result

In this part, we shall exclusively focus on Theorem 2.1 from which, as we show in the previous
section, our main result (Theorem 1.1) follows. Before we give the complete proof of Theorem 2.1,
let us outline its main steps for the reader’s convenience.

Step 1. There exists ρ > 1 such that for every ε > 0 and any finite (not necessarily injective)
sequence A = {Qi}ki=0 ⊂ Rm×n with Q0 ≡ 0 and ||Qi+1 − Qi|| < ε there exists a C∞ function
ΨA : Rn → Rm satisfying

suppΨA ⊂ BRn and A ⊂ Im(DΨA) ⊂ A+ ρεBRm×n .
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Step 2. For every C ∈ K0(BRm×n) (compact connected subset of the unit ball with 0 ∈ C) there
exists a differentiable function ΨC : Rn → Rm with bounded support, C∞ on Rn⧹{0} such that

JLΨC(0) = C.

Step 3. We codify the (compact metric) set K(BRm×n) on the Cantor set ∆ in a way that admits
a continuous selection, that is, there exists a continuous function V : ∆ → BRm×n and a continuous
surjection h : ∆ → K(BRm×n) such that

V (t) ∈ h(t), for every t ∈ ∆.

Step 4. Applying Whitney extension theorem (Proposition 2.2), we obtain a C1-smooth function
g : Rn → Rm such that Dg(t, 0n−1) = V (t), for every t ∈ ∆.

Step 5. We set

(13) H(t) := h(t)− V (t) ∈ K0(BRm×n) and [0, 1]⧹∆ =
∞⋃
i=1

(ℓi, ri).

Using Step 2, we construct a differentiable Lipschitz function Ψ : Rn → Rm with bounded support
such that for every i ∈ N

JLΨ((ℓi, 0n−1)) = H(ℓi) and JLΨ((ri, 0n−1)) = H(ri).

Moreover, the function Ψ is C∞ on Rn \ (△× {0}n−1) and DΨ vanishes on ∆ × Rn−1. Therefore,
JLΨ(x) = {DΨ(x)}, for all x ∈ Rn \ (△×{0}n−1). On the other hand, since JLΨ has a closed graph
and H is DH-continuous, we deduce from (13) that

JLΨ((t, 0n−1)) = H(t), for every t ∈ ∆.

Step 6. The function Φ = g +Ψ satisfies the conclusion of Theorem 2.1.

We shall now proceed to the proof of Theorem 2.1 according to the above steps. In what follows,
we fix n,m ∈ N \ {0}.

3.1. Steps 1–2: representation of any element of K0(BRm×n) as limiting Jacobian. This
part is inspired by the aforementioned works [1, 2]. In particular, the following lemma can be
deduced from [1, Lemma 3]. We include a short proof for completeness.

Lemma 3.1 (representing a matrix as Jacobian). There exists ρ > 1 such that for every matrix
Q ∈ Rm×n, there exists a C∞-smooth function φQ : Rn → Rm, with Lip(φQ) ≤ ρ∥Q∥ that satisfies
suppφQ ⊂ BRn and

φQ(x) = Qx, for all x ∈ 2−1BRn .

Proof. Take any C∞-smooth bump function ϕ : Rn → R with suppϕ ⊂ BRn and ϕ|2−1BRn ≡ 1 and
set φQ(x) := ϕ(x)Qx, for all x ∈ Rn. Indeed, φQ is ρ∥Q∥-Lipschitz, with ρ = ∥ϕ∥∞+ ∥Dϕ∥∞. □

From now on, we fix ρ > 1 to be the constant given by Lemma 3.1. From the above lemma, we
readily get the following result.
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Lemma 3.2 (recovering a discrete ε-path by Jacobians). Let ε > 0 and A := {Qk}ℓk=0 ⊂ Rm×n be
a finite sequence of matrices (with possible repetitions) such that, Q0 = 0 and ∥Qk+1 −Qk∥ ≤ ε for
all k ∈ {0, ..., ℓ − 1}. Then, there exists a C∞-function φA : Rn → Rm, with suppφA ⊂ BRn , such
that

{Qk}ℓk=0 ⊂ Im(DφA) ⊂ {Qk}ℓk=0 + ρεBRn .

Proof. Let φk := φQk+1−Qk
be the C∞-function obtained in Lemma 3.1 corresponding to the matrix

Q := Qk+1 −Qk, for k ∈ {0, ..., ℓ− 1}. Clearly, Lip(φk) ≤ ρε. Notice that the C∞-smooth function

φ̃k(x) = 2−2k φk(2
2k x), x ∈ Rn,

satisfies supp φ̃k ⊂ 2−2k BRn and φ̃k(x) = (Qk+1 −Qk)x, for every x ∈ 2−(2k+1)BRn , that is,

Dφ̃k |2−(2k+1) BRn
≡ Qk+1 −Qk, for every k ∈ {0, ..., ℓ− 1} .

We now define the C∞-function φA : Rn → Rm by

φA(x) =

ℓ−1∑
k=0

φ̃k(x) ≡
ℓ−1∑
k=0

2−2k φk(2
2kx), for all x ∈ Rn.

Since
j∑

k=0

Dφ̃k(x) = Qj+1, for all x ∈ 2−(2j+1)BRn and j ∈ {0, ..., ℓ− 1} ,

we easily conclude that for every j ∈ {0, ..., ℓ− 1} and every x ∈
(
2−(2j+1)BRn

)
⧹

(
2−(2j+2)BRn

)
we have DφA(x) =

∑ℓ−1
k=0Dφ̃k(x) = Qj+1. The assertion of the statement follows easily. □

The following lemma provides adequate approximations of compact connected sets by ε-paths
(which are representable by the previous lemma). This is an intermediate step to deduce their
representability by a limiting Jacobian.

Lemma 3.3 (approximating compact connected sets by ε-paths). Let K ⊂ Rm×n be compact,
connected such that 0 ∈ K and let ε > 0. Then, for any finite ε-net A ⊂ K, with 0 ∈ A, there exists
a surjective (not necessarily injective) enumeration {Qk}ℓk=0 of the elements of A such that

Q0 = 0 and ∥Qk+1 −Qk∥ ≤ 3ε, for all k ∈ {0, ..., ℓ− 1} .

Proof. It follows from the fact that K is a compact connected set and that K ⊂ ∪Q∈AB(Q, 2ε). □

In the next lemma we construct functions with controlled oscillation and with two prescribed
limiting Jacobians.

Lemma 3.4 (recovering two compact connected sets by Jacobians). Let 0 ≤ ℓ < r ≤ 1, 0 < ε < 1
and Cℓ, Cr ∈ K0(BRm×n) (compact connected subsets of BRm×n containing 0). Then there exists a
differentiable, Lipschitz function ψ ≡ ψℓ,r: Rn → Rm, which is C∞ on Rn⧹ {(ℓ, 0n−1), (r, 0n−1)},
such that

(i) suppψ ⊂
⋃

t∈[ℓ,r]BRn ((t, 0n−1), ρt) where ρt := 2−1 min {t− ℓ, r − t}.
(ii) Dψ(Rn) ⊂ (Cℓ ∪ Cr) + εBRm×n.

(iii) JLψ(ℓ, 0n−1) = Cℓ and JLψ(r, 0n−1) = Cr.

Moreover, for any x = (x1, ..., xn) ∈ Rn, we have

(14) ∥ψ(x)∥ ≤ min
{
|ℓ− x1|2, |r − x1|2

}
.
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Proof. Consider two sequences {cj}j ⊂
[
ℓ, ℓ+

r − ℓ

3

]
and {c′j}j ⊂

[
r − r − ℓ

3
, r

]
defined as follows:

(15) cj = ℓ+
1

j + 1

(
r − ℓ

3

)
and c′j = r − 1

j + 1

(
r − ℓ

3

)
, for all j ∈ N.

Then {cj}j converges decreasingly to ℓ and {c′j}j converges increasingly to r. For any j ∈ N, let
Aj ⊂ Cℓ and A

′
j ⊂ Cr be finite ε

3ρ(j+1) -nets of Cℓ and Cr respectively. Then, combining Lemma 3.3

and Lemma 3.2 we deduce that there exist C∞-functions φAj : Rn → Rm and φA′
j
: Rn → Rm with

support contained in BRn such that

(16) Aj ⊂ Im(DφAj ) ⊂ Aj+

(
ε

j + 1

)
BRm×n and A′

j ⊂ Im(DφA′
j
) ⊂ A′

j+

(
ε

j + 1

)
BRm×n .

Take a decreasing sequence {δj}j≥1 ⊂ (0, 1) converging to 0, with the property that the intervals

Ij := (cj − δj , cj + δj), j ∈ N

are mutually disjoint. For this, it is sufficient to have

(17) δj + δj+1 ≤ 2δj ≤
r − ℓ

3(j + 2)2
<

(
r − ℓ

3

)(
1

j + 1
− 1

j + 2

)
.

We shrink further the values of {δj}j≥1 if necessary, to ensure that

(18) δj max
{
∥φAj∥∞, ∥φA′

j
∥∞

}
≤ min

{
cj − δj − ℓ, r − c′j − δj

}2
.

Then we set for every j ≥ 1 and x ∈ Rn

φ̃j(x) = 2−1δj φAj (2δ
−1
j (x− cj)) and φ̃′

j(x) = 2−1δj φA′
j
(2δ−1

j (x− c′j)).

Notice that, thanks to (17), the functions {φ̃j}j ∪{φ̃′
j}j are C∞ and have pairwise disjoint supports.

It follows that the function ψ : Rn → Rm defined by

ψ(x) :=

∞∑
j=0

(
φ̃j(x) + φ̃′

j(x)
)

is Lipschitz, C∞-smooth on Rn⧹{(ℓ, 0n−1), (r, 0n−1)} and satisfies (i). Thanks to (18), we have

∥ψ(x)∥ ≤ min
{
|ℓ− x1|2, |r − x1|2

}
,

which ensures that ψ is differentiable at both points (ℓ, 0n−1) and (r, 0n−1) with derivative

Dψ(ℓ, 0n−1) = Dψ(r, 0n−1) = 0.

We deduce easily from (16) that ψ satisfies (ii). Finally, since

lim
j→0

max
{
dH(Aj , Cℓ), dH(A′

j , Cr)
}
= 0,

and (16), we deduce that

JLψ(ℓ, 0n−1) = Cℓ and JLψ(r, 0n−1) = Cr.

The proof is complete. □
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3.2. Step 3: a coding of K(BRm×n) that admits a continuous selection. We first recall that
if the set B is nonempty and compact, then the metric space (K(B), DH) is compact, where DH

denotes the canonical Hausdorff distance.

Lemma 3.5 (coding with a continuous selection). Let B ⊂ Rm×n be a nonempty compact set.
Then there exists a continuous surjective function h : △ → (K(B), DH) that admits a continuous
selection. That is, there is a continuous function V : △ → B such that

V (t) ∈ h(t), for all t ∈ △.

Proof. Since (K(B), DH) is a compact metric space, there exists a continuous surjective function
h1 : △ → K(A). Since h1 is continuous with respect to the Hausdorff distance and B is compact,
the set

A :=
⋃
t∈△

({t} × h1(t)) =
{
(t, Q) ∈ R× Rm×n : t ∈ △, Q ∈ h1(t)

}
is compact and consequently, there exists a continuous surjective function h2 : △ → A. Let now π1
and π2 denote the canonical projections of R×Rm×n onto R and Rm×n respectively and define the
(continuous) functions

h = h1 ◦ π1 ◦ h2 and V = π2 ◦ h2.
It follows easily that h is surjective and that V (t) ∈ h(t), for all t ∈ △. □

3.3. Steps 4–6: construction of the function. Let {ℓk}k and {rk}k be two injective sequences
such that

(19) [0, 1]\△ =
∞⋃
k=0

(ℓk, rk) (disjoint union of open intervals).

Let us consider the functions

h : △ → K(BRn×m(0, 1)) and V : △ → BRn×m(0, 1)

given by Lemma 3.5. We extend the selection V (defined on ∆) to a function V̂ : [0, 1] → Rm by
linear interpolation:

(20) V̂ (t) =

(
rk − t

rk − ℓk

)
V (ℓk) +

(
t− ℓk
rk − ℓk

)
V (rk), for all t ∈ (ℓk, rk).

Notice that V̂ is a continuous extension of V from ∆ to [0, 1]. We set

Σ := [0, 1]× {0}n−1

and define the function

(21)

{
α : Σ → Rm

α(σ) ≡ α ((t, 0n−1)) =
∫ t
0 ⟨V̂ (s), e1⟩ ds, for every σ = (t, 0n−1) ∈ Σ,

where e1 = (1, 0n−1). We also define

(22)

{
β : Σ → Rm×n

β(σ) ≡ β ((t, 0n−1)) = V̂ (t).
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We aim to apply Proposition 2.2 (Whitney extension theorem) and show that the function α : Σ → Rm

admits a C1-smooth extension g : Rn → Rm satisfying Dg(t, 0n−1) = V̂ (t), for all σ = (t, 0n−1) ∈ Σ.
To this end, we take 0 ≤ t1, t2 ≤ 1 and set σi = (ti, 0n−1) ≡ tie1, i ∈ {1, 2}. Recalling (10) we have:

Pσi(x) = α(σi) + ⟨β(σi), x− σi⟩ =
∫ ti

0
⟨V̂ (s), e1⟩ ds + ⟨V̂ (ti), x− σi⟩ ,

and consequently, in view of (21),

Pσ2(σ1)− Pσ1(σ1) =

∫ t2

t1

⟨V̂ (s), e1⟩ ds +

〈
V̂ (t2), t1e1︸︷︷︸

σ1

− t2e1︸︷︷︸
σ2

〉

=

∫ t2

t1

⟨V̂ (s)− V̂ (t2), e1⟩ ds(23)

Denoting by T the interval [t1, t2], if t1 ≤ t2 or the interval [t2, t1], if t1 > t2, we obtain

(24) ∥Pσ2(σ1)− Pσ1(σ1)∥ ≤ |t2 − t1|︸ ︷︷ ︸
=∥σ1−σ2∥

sup
s∈T

∥V̂ (s)− V̂ (t2)∥.

Notice that since V̂ is uniformly continuous on the compact set Σ it holds:

ρ1(δ) := sup
∥σ1−σ2∥≤δ

∥β(σ1)− β(σ2)∥ =︸︷︷︸
(22)

sup
|t1−t2|≤δ

∥∥∥V̂ (t1)− V̂ (t2)
∥∥∥ → 0 (as δ → 0).

We also deduce from (24) that

ρ0(δ) := sup
∥σ1−σ2∥≤δ

{
∥Pσ2(σ1)− Pσ1(σ1)∥

∥σ1 − σ2∥

}
≤︸︷︷︸
(24)

sup
|t1−t2|≤δ

∥∥∥V̂ (t1)− V̂ (t2)
∥∥∥ → 0 (as δ → 0).

Applying Proposition 2.2 we obtain a C1-function g : Rn → Rm such that

Dg((t, 0n−1)) = V̂ (t), for all t ∈ △.
Multiplying, if necessary, g by a smooth cut-off function which is equal to 1 on BRn , we can assume,
with no loss of generality, that g is a Lipschitz C1-function with bounded support.

We shall now modify g in the cylinders (ℓk, rk)× Rn−1 ⊂ Rn. To this end, for any k ∈ N, set
H(ℓk) := h(ℓk)− V (ℓk) and H(rk) := h(rk)− V (rk)

and consider the Lipschitz function ψk : Rn → Rm given by Lemma 3.4 for ℓ = ℓk, r = rk and
ε = (k + 1)−1 and the sets Cℓk = H(ℓk) and Crk = H(rk) in K0(BRm×n). We finally set{

Φ : Rn → Rm

Φ(x) := g(x) +
∑∞

k=0 ψk(x), for all x ∈ Rn.

We shall show that Φ satisfies the assertion of Theorem 2.1. Set Ψ :=
∑∞

k=0 ψk. Let us first
recall that g ∈ C1(Rn,Rm) and that each function ψk is C∞ on Rn⧹ {(ℓk, 0n−1), (rk, 0n−1)} and
differentiable everywhere. Since the supports of the functions {ψk}k are pairwise disjoint and satisfy
Lemma 3.4 (i), it follows that Ψ is Lipschitz and C1 on Rn⧹ (△× {0n−1}), with DΨ(x) = Dψk(x)
for all x ∈ (ℓk, rk)×Rn−1 and DΨ(x) = 0 for all x ∈ (△× Rn) \ (△× {0}n). Moreover, combining
with (14) we deduce that

∥Ψ(x)∥ =

∥∥∥∥∥
∞∑
k=0

ψk(x)

∥∥∥∥∥ ≤ inf
t∈{lk}k

⋃
{rk}k

{
|t− x1|2

}
= min

t∈△
{|t− x1|2}
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and consequently Ψ is everywhere differentiable with

DΨ(x) = 0, for all x ∈ △× {0}n−1.

Thanks to Lemma 3.4 (iii), we deduce that JLΨ(ℓk, 0n−1) ⊃ H(ℓk) and JLΨ(rk, 0n−1) ⊃ H(rk)
for all k ∈ N. Since the graph of the limiting Jacobian JLΨ is closed and H is continuous for the
Hausdorff distance, we get that

JLΨ(t, 0n−1) ⊃ H(t), for all t ∈ △.

We shall now prove that the above inclusion is in fact equality, that is, we have JLΨ(t, 0n−1) = H(t),
for every t ∈ △. Let us first consider the case t ∈ △ \ {ℓk, rk : k ∈ N} and fix ε > 0. Since H is
continuous, there exists δ > 0 such that

DH(H(t), H(s)) ≤ ε

2
, for all s ∈ △ ∩ (t− δ, t+ δ).

Shrinking δ if needed, we can also ensure that if (ℓk, rk) ∩ (t− δ, t+ δ) ̸= ∅ for some k ∈ N, then

max (DH(H(t), H(ℓk)), DH(H(t), H(rk))) ≤
ε

2
.

Set N(δ) := inf{k ∈ N : (ℓk, rk) ∩ (t − δ, t + δ) ̸= ∅}. Clearly, N(δ) tends to +∞ as δ tends to 0.
We deduce from Lemma 3.4 (ii) that

DΨ((ℓk, rk)×Rn−1) ≡ Dψk((ℓk, rk)×Rn−1) ⊂ (H(ℓk) ∪H(rk)) + (k+1)−1BRm×n , for all k ∈ N.

Shrinking further δ to ensure that N(δ) + 1 > 2ε−1 and recalling that DΨ ≡ 0 on △× Rn−1, we
obtain that

DΨ((t− δ, t+ δ)× Rn−1) ⊂ H(t) + εBRm×n .

Therefore, JLΨ((t, 0n−1)) ⊂ H(t) + εBRm×n . Since ε > 0 is arbitrary, we finally conclude that
JLΨ((t, 0n−1)) ⊂ H(t). So, JLΨ((t, 0n−1)) = H(t).

We now consider the case t ∈ {ℓk}k∈N ∪ {rk}k∈N and focus on the formula of JLΨ(t, 0n−1) given
by (2). Let us assume, to fix the ideas, that t = ℓk0 for some k0 ∈ N (the case t = rk0 can be
treated analogously). Then every element Q of JLΨ(t, 0n−1) can be obtained as limit of a sequence
of derivatives of Ψ lying either on the cylinder [ℓk, rk] × Rn−1 (where Ψ ≡ ψk0) or a the cylinder
of the form (ℓ − δ, ℓ) × Rn−1 (for any δ > 0 arbitrary small). In the first case, we can directly use
Lemma 3.4 (iii) while in the second case the analysis of the set of limits follows the same steps as
above. The details are left to the reader.

Finally, since the function g is C1-smooth, we deduce that for every t ∈ △

JLΦ(t, 0n−1) = Dg(t, 0n−1) + JLΨ(t, 0n−1) = V (t) +H(t) = h(t).

On the other hand, for any x ∈ Rn \ (△× {0}n) we have

JLΦ(x) = {Dg(x) +DΨ(x)} ∈ K(Rm×n).

The proof is now complete. □
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3.4. A simple proof for the case n = m = 1. In this section we illustrate the above proof for the
case n = m = 1. In this one-dimensional case, the proof is much simpler: any coding of the family of
the closed intervals of [−1, 1] admits a natural continuous selection (the mid-point of the interval)
and a full construction can be carried out, without passing through a Whitney extension result.
We point out that some extra considerations should be taken into account in order to construct a
1-Lipschitz function. This result was also obtained in [5, Theorem 3.7] with a much more elaborated
proof.

Theorem 3.6 (case n = m = 1). There exists a differentiable 1-Lipschitz function f : R → R with
bounded support, such that for any nonempty closed interval [a, b] ⊂ [−1, 1], there is a point x such
that JLf(x) = [a, b].

Proof. Let us set

T := {(a, b) ∈ R2 : −1 ≤ a ≤ b ≤ 1}.
(Notice the natural correspondence between T and K([−1, 1]): for (a, b) ∈ T we associate the closed
interval [a, b] of [−1, 1]. We further equip T with the distance inherited by the infinite norm ∥ · ∥∞
on R2, so that T becomes isometrically isomorphic to K([−1, 1]).) Since T is compact, there exists
a continuous surjection h : △ → T . We may also assume that h(0) = h(1) = (0, 0). Let {ℓk}k and
{rk}k be the injective sequences defined in (19), that is,

[0, 1]\△ =
⋃
k∈N

(ℓk, rk).

We first extend h from ∆ to [0, 1] by linear interpolation, that is, for every k ∈ N we have:

h(t) =:

(
rk − t

rk − ℓk

)
h(ℓk) +

(
t− ℓk
rk − ℓk

)
h(rk), for all t ∈ (ℓk, rk).

We further extend h to the whole line R by setting h(t) ≡ (0, 0) for t ∈ R⧹[0, 1].

We write h(t) := (h1(t), h2(t)), for every t ∈ R. Then, the function V : R → [−1, 1] defined by
V (t) = 2−1(h1(t) + h2(t)) is a continuous selection of the multivalued map H : R ⇒ R defined by
H(t) = [h1(t), h2(t)]. We now define the function a : R → R

a(t) := h2(t)− V (t) =
h2(t)− h1(t)

2
≥ 0, for all t ∈ R.

Let ϕ : R → R be a C∞-function such that

suppϕ ⊂ [−1, 1] and Dϕ(R) = [−1, 1].

For each k ∈ N, we consider sequences {ck,j}j , {c′k,j}j ⊂ (ℓk, rk) defined as in (15), that is,

ck,j = ℓk +
1

j + 1

(
rk − ℓk

3

)
and c′k,j = rk −

1

j + 1

(
rk − ℓk

3

)
, for all j ∈ N.

For each k ∈ N, let {δk,j}j ⊂ (0, 1) be a decreasing sequence, converging to 0 as j → ∞ and
satisfying

(25) δk,j∥ϕ∥∞max (a(ck,j), a(c
′
k,j)) ≤ (min {ck,j − δk,j − ℓk, rk − ck,j − δk,j})2 ,

and be such that the family of intervals{
[ck,j − δk,j , ck,j + δk,j ], [c

′
k,j − δk,j , c

′
k,j + δk,j ] : k, j ∈ N

}
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is pairwise disjoint. Consider further sequences {εk,j}k,j and {ε′k,j}k,j defined by

εk,j =
a(ck,j)

j + 1
and ε′k,j =

a(c′k,j)

j + 1
.

Note that

(26) lim
j→∞

εk,j = lim
j→∞

ε′k,j = 0, for all k ∈ N.

Since V is continuous, shrinking further δk,j if necessary, we may also assume that

V (t) + [−a(ck,j) + εk,j , a(ck,j)− εk,j ] ⊂ [−1, 1], for all t ∈ (ck,j − δk,j , ck,j + δk,j),(27)

and V (t) + [−a(c′k,j) + ε′k,j , a(c
′
k,j)− ε′k,j ] ⊂ [−1, 1], for all t ∈ (c′k,j − δk,j , c

′
k,j + δk,j).

Consider the functions ψk,j : R → R defined by

ψk,j(t) := δk,j

(
(a(ck,j)− εk,j)ϕ(δ

−1
k,j (t− ck,j)) + (a(c′k,j)− ε′k,j)ϕ(δ

−1
k,j (t− c′k,j))

)
.

Observe that suppψk,j ⊂ {ck,j , c′k,j}+ [−δk,j , δk,j ], and

Dψk,j ([ck,j − δk,j , ck,j + δk,j ]) = [−a(ck,j) + εk,j , a(ck,j)− εk,j ],(28)

Dψk,j

(
[c′k,j − δk,j , c

′
k,j − δk,j ]

)
= [−a(c′k,j) + ε′k,j , a(c

′
k,j)− ε′k,j ].

We finally set {
Ψ : R → R
Ψ(t) :=

∑∞
k,j=0 ψk,j(t).

Note that, for every t ∈ R, there is at most one couple (k, j) such that t ∈ suppψk,t. As we did in
the proof of Theorem 2.1, we can show that DΨ(t) =

∑∞
k,j=0Dψk,j(t) for all t ∈ R \ △. Thanks

to (25), it follows that |Ψ(t)| = min{(t− x)2 : x ∈ △}. Therefore, DΨ(t) = 0 for all t ∈ △. Hence,
combining with (26), (28) and the continuity of a, we get

JLΨ(t) = [−a(t), a(t)] ≡
[
h1(t)− h2(t)

2
,
h2(t)− h1(t)

2

]
, for all t ∈ △.

We now consider the C1-function g : R → R defined by

g(t) :=

∫ t

0
V (s)ds =

∫ t

0

h1(s) + h2(s)

2
ds, for all t ∈ R.

Since V is continuous, Dg(t) = V (t) for all t ∈ R. Let us finally define f = g + Ψ. Thanks to
(27), we deduce that Df(t) = V (t) +DΨ(t) ∈ [−1, 1] for all t ∈ R, and therefore, f is 1-Lipschitz.
Moreover

JLf(t) = Dg(t) + JLΨ(t) = [h1(t), h2(t)], for all t ∈ △.

Using a standard argument, we can modify f outside [0, 1] to ensure that it has bounded support.
□
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4. Smooth functions from Rn to Rm with surjective derivatives

In this section we show how to construct a C1-function g : Rn → Rm whose derivative takes in its
range all Q ∈ Rm×n. As before (c.f. Theorem 2.1), it will be sufficient to construct a C1-function g
with bounded support such that

Im(Dg) ⊃ BRm×n .

We now show how the proof of Theorem 2.1 can be modified to provide an easy proof of the
above assertion. Indeed, our set of interest is now the compact metric space BRm×n (rather than
K(BRm×n)) and Steps 1–2 and 5–6 are now irrelevant, since we deal with singletons.

We proceed as follows: let h : ∆ → BRm×n be a continuous surjection (coding over the Cantor set)
and extend it to a continuous (surjective) function

V̂ : [0, 1] → BRm×n (with V̂ |∆ = h).

Note that, V̂ is a Peano-like curve filling the set BRm×n . We define α : [0, 1] × {0}n−1 → Rm and
β : [0, 1]×{0}n−1 → Rm×n by (21) and respectively (22) and proceed as in Subsection 3.3 to obtain
(by Proposition 2.2) a C1-function g with bounded support satisfying

Dg((t, 0n−1)) = V̂ (t), for all t ∈ [0, 1],

which is the desired conclusion.

Remark 4.1. Several authors have worked on questions related to the range of the derivative of
a smooth map from Rn to R (see e.g. [3, 7, 10] and references therein), corresponding to the case
m = 1. In this case, the question of surjectivity of the derivative map admits a trivial answer (think
of the example g(x) = ||x||2 for the Euclidean norm). To the best of our knowledge, there are no
results in the literature related to the surjectivity of the derivative map for m > 1.

Acknowledgment. This research was funded in whole or in part by the Austrian Science Fund
(FWF) [DOI 10.55776/P36344N]. For open access purposes, the first author has applied a CC BY
public copyright license to any author accepted manuscript version arising from this submission.

References

[1] D. Bartl, M. Fabian, Every compact convex subset of matrices is the Clarke Jacobian of some Lipschitzian
mapping, Proc. Amer. Math. Soc., 149 (2021), 4771–4779.

[2] D. Bartl, M. Fabian, J. Kolar, Clarke Jacobians, Bouligand Jacobians, and compact connected sets of
matrices, J. Math. Anal. Appl. 516 (2022), Paper No. 126491.

[3] J. Borwein, M. Fabian, I. Kortezov and P. Loewen, The range of the gradient of a continuously differentiable
bump. J. Nonlinear Convex Anal. 2 (2001) 1-19.

[4] F. Clarke, Optimization and Nonsmooth Analysis, Wiley-Interscience, 1991.
[5] A. Daniilidis, R. Deville, S. Tapia-Garcia, All convex bodies are in the subdifferential of some everywhere

differentiable locally Lipschitz function, Proc. Lond. Math. Soc. 129 (2024), Paper 70007.
[6] H. Federer, Geometric measure theory, Grundlehren der mathematischen Wissenschaften 153, Springer, New

York, 1969.
[7] T. Gaspari, On the range of the derivative of a real-valued function with bounded support. Stud. Math. 153,

No. 1, (2002), 81-99.
[8] A. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics 156 (Springer, 1995)
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